

CompuCell3D Reference Manual - 4.3.0

The focus of this manual is to explain internals of C++ code and provide all information you need start writing your own
C++ extension modules for CompuCell3D

introduction

Indices and tables

	Index

	Module Index

	Search Page

Funding

From early days CompuCell3D was funded by science grants. The list of funding entities include

	National Institutes of Health (NIH)

	US Environmental Protection Agency (EPA)

	National Science Foundation (NSF)

	Falk Foundation

	Indiana University (IU)

	IBM

The development of CC3D was funded fully or partially by the following awards:

	National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering,U24 EB028887, “Dissemination of libRoadRunner and CompuCell3D”, (09/30/2019 – 06/30/2024)

	National Science Foundation, NSF 1720625, “Network for Computational Nanotechnology - Engineered nanoBIO Node”, (09/1/2017-08/31/2022)

	National Institutes of Health, National Institute of General Medical Sciences, R01 GM122424, “Competitive Renewal of Development and Improvement of the Tissue Simulation Toolkit”, (02/01/2017 - 01/31/2021)

	Falk Medical Research Trust Catalyst Program, Falk 44-38-12, “Integrated in vitro/in silico drug screening for ADPKD”, (11/30/2014-11/29/2017)

	National Institutes of Health, National Institute of General Medical Sciences, National Institute of Environmental Health Sciences and National Institute of Biomedical Imaging and Bioengineering, U01 GM111243 “Development of a Multiscale Mechanistic Simulation of Acetaminophen-Induced Liver Toxicity”, (9/25/14-6/30/19)

	National Institutes of Health, National Institute of General Medical Sciences, R01 GM076692, “Competitive Renewal of MSM: Multiscale Studies of Segmentation in Vertebrates”, (9/1/05-8/31/18)

	
	
	Environmental Protection Agency, R835001, “Ontologies for Data & Models for Liver Toxicology”, (6/1/11-5/30/15)

	National Institutes of Health, National Institute of General Medical Sciences, R01 GM077138, “Competitive Renewal of Development and Improvement of the Tissue Simulation Toolkit”, (9/1/07-3/31/15).

	
	
	Environmental Protection Agency, National Center for Environmental Research, R834289, “The Texas-Indiana Virtual STAR Center: Data-Generating in vitro and in silico Models of Development in Embryonic Stem Cells and Zebrafish”, (11/1/09-10/31/13)

	Pervasive Technologies Laboratories Fellowship (Indiana University Bloomington) (12/1/03-11/30/04).

	IBM Innovation Institute Award (9/25/03-9/24/06)

	National Science Foundation, Division of Integrative Biology, IBN-0083653, “BIOCOMPLEXITY–Multiscale Simulation of Avian Limb Development”, (9/1/00-8/31/07)

Setting up Windows computer for DeveloperZone compilation and developing new CC3D plugins and Steppables in C++

If you want tot develop plugins and steppables under windows you will need to install free Visual Studio
2015 Community Version. The installation of this package is straightforward but you need to make sure that you are
installing C/C++ compilers when the installer gives you options to select which programming languages
you would like to have support for. The best way to download Visual Studio is to
get it directly from Microsoft website. Current link to visual studio download page is
here: https://visualstudio.microsoft.com/vs/older-downloads/ .
Just make sure you scroll down and find Visual Studio 2015. It has to be exactly this version. CompuCell3D compilation
will likely not work with other versions. Once you download and install Visual Studio 2015 you are ready to start
compiling Developer Zone projects and develop your own CompuCell3D plugins and steppables in C++.

Setting up Linux computer for DeveloperZone compilation and developing new CC3D plugins and Steppables in C++

If you are using linux computer , most likely you do not need to do any compiler setup. CC3D on Linux comes prepackaged
with all compilers and it does not matter if you installed CC3D using automated installer or installed directly using
conda install command.

Setting up your Mac for DeveloperZone compilation and developing new CC3D plugins and Steppables in C++

Starting with CC3D 4.3.0 when you install CC3D it will come with most of the tools needed to compile C+++
plugins and steppables. The only thing that you need in addition to this is to install xcode-select package
To install this from the terminal run the following:

xcode-select --install

This is it and you should be ready to compile custom plugins and steppables written in C++

Setting up your Mac for CC3D compilation via conda

Sometimes you may want to compile entire CC3D C++ code using conda build system. In general when compiling
code via conda-build system you do not need to install anything - besides manking sure that your conda-build
system works properly. To ensure that conda build system works properly from your base conda environment (
it is important that this is base environment or else things may not work properly) run

conda install conda-build

This will install all utilities you need to build CC3D. Tools like swig, cmake, compilers etc will be downloaded
and installed automatically just in time for compilation. We will only mention that Current version of CC3D uses
clang compilers version 12. On Linux we use gcc compilers and on Windwos Visual Studio 2015 Community Version (free)

To compile CC3D on your Mac using conda-build system follow this procedure:

	Install xcode-select - see above

2. install miniconda3 with Python 3.7 - https://repo.anaconda.com/miniconda/Miniconda3-py37_4.11.0-MacOSX-x86_64.sh .
Once you install miniconda in the base environment of newly installed miniconda install conda-build package

conda install conda-build

3. Get MacOS SDK 10.10 - https://github.com/phracker/MacOSX-SDKs or directly from
https://github.com/phracker/MacOSX-SDKs/releases. Here is direct link to the actual compressed folder:
https://github.com/phracker/MacOSX-SDKs/releases/download/11.3/MacOSX10.10.sdk.tar.xz
Once you unpack move the content to /opt folder of your Mac. You need to be admin to do this.
You should be able to see the following folder /opt/MacOSX10.10.sdk after the copy is complete

	Clone CC3D repository

git clone https://github.com/CompuCell3D/CompuCell3D.git

	Go to CC3D repository’s conda-recipes folder:

cd <CC3D repository dir>/conda=recipe

	Start compilation by typing

conda build . -c conda-forge -c compucell3d

After a while you should have CC3D conda package ready

Configuring DeveloperZone Projects for compilation

From technical viewpoint DeveloperZone is a folder that contains source code for additional plugins and steppables
written in C++. Depending on your needs, sometimes, you want to write high-performance CC3D module that runs much faster
than equivalent Python code. Up until version 4.3.0 of CC3D developing C++ modules was a little bit involved because
it required users to install and configure appropriate compilers that will work with provided binaries, performing
CMake configuration - the challenge here was to make sure that all Cmake variables point to appropriate directories,
that Python version identified by Cmake matches the one with which CC#D was compiled etc… In practice this process was
often perceived as quite error-prone.

Starting with version 4.3.0 of CC3D we provide one-click configurator for “DeveloperZone” All that is required from
the user is one time setup of compiler (on Windows you will install Visual Studio 2015 Community Edition, and on Mac
you need to install xcode-select package - all described in sections above. On linux you will likely not need any
additional setup).

Once you set up compilers (and install binaries for CC3D) open Twedit++ and go to CC3D C++ -> DeveloperZone
This will open the following dialog:

[image: dz_001]

Before going any further, make sure you you have a working copy of the CC3D source code. The best way is to clone CC3D
source code repository. If you have git installed on your system you are ready to go. If not you can easily do it
by running conda-shell script from CC3D installation folder. Assuming your CC3D is installed
into c:\CompuCell3D (on Windows) you would run the following:

cd c:\
c:\CompuCell3D\conda-shell.bat

then :

conda install -c conda-forge git

At this point you should have git installed within base environment of the miniconda distribution that
is bundled with CC3D. In general to make use of any conda tools you would first need to run conda-shell each time
you open new terminal.

Let’s clone CC3D source code now. In the terminal where you previously ran conda-shell.bat, do the following

cd c:\cc3d_source
git clone https://github.com/CompuCell3D/CompuCell3D.git .

This will clone (download) CC3D source code and place it in c:\cc3d_source

Now let’s make build directory. This is a directory where compilers will place temporary compilation objects:

cd c:\
mkdir cc3d_source_build

Warning

It is important to create a fresh (empty) build directory before you can configure DeveloperZone configuration. CC3D cannot use build directory that is non empty

 Introduction to Core CC3D Objects

Introduction to Core CC3D Objects

	Simulator

	Potts3D

Simulator

Simulator is the key C++ module that sits at the root of each simulation run by CC3D. This is essentially a single class
Simulator and it is responsible for orchestrating the flow of each CC3D simulation. Simulator object creates and
manages other key objects such as Potts3D and ensures the integrity of the entire simulation.
The code for the object is stored in CompuCell3D\Simulator.h and CompuCell3D\Simulator.cpp

Let us look at the header file of the Simulator to examine the responsibilities that Simulator when running CC3D
simulations

namespace CompuCell3D {
 class ClassRegistry;
 class BoundaryStrategy;

 template <typename Y> class Field3DImpl;
 class Serializer;
 class PottsParseData;
 class ParallelUtilsOpenMP;

 class COMPUCELLLIB_EXPORT Simulator : public Steppable {

 ClassRegistry *classRegistry;

 Potts3D potts;

 int currstep;

 bool simulatorIsStepping;
 bool readPottsSectionFromXML;
 std::map<std::string,Field3D<float>*> concentrationFieldNameMap;
 //map of steerable objects
 std::map<std::string,SteerableObject *> steerableObjectMap;

 std::vector<Serializer*> serializerVec;
 std::string recentErrorMessage;
 bool newPlayerFlag;

 std::streambuf * cerrStreamBufOrig;
 std::streambuf * coutStreamBufOrig;
 CustomStreamBufferBase * qStreambufPtr;

 std::string basePath;
 bool restartEnabled;

 public:

 ParserStorage ps;
 PottsParseData * ppdCC3DPtr;
 PottsParseData ppd;
 PottsParseData *ppdPtr;
 ParallelUtilsOpenMP *pUtils;
 ParallelUtilsOpenMP *pUtilsSingle; // stores same information as pUtils but assumes that we use only single CPU - used in modules for which user requests single CPU runs e.g. Potts with large cells

 double simValue;

 void setOutputRedirectionTarget(ptrdiff_t _ptr);
 ptrdiff_t getCerrStreamBufOrig();
 void restoreCerrStreamBufOrig(ptrdiff_t _ptr);

 void setRestartEnabled(bool _restartEnabled){restartEnabled=_restartEnabled;}
 bool getRestartEnabled(){return restartEnabled;}

 static PluginManager<Plugin> pluginManager;
 static PluginManager<Steppable> steppableManager;
 static BasicPluginManager<PluginBase> pluginBaseManager;
 Simulator();
 virtual ~Simulator();
 // PluginManager::plugins_t & getPluginMap(){return pluginManager.getPluginMap();}

 //Error handling functions
 std::string getRecentErrorMessage(){return recentErrorMessage;}
 void setNewPlayerFlag(bool _flag){newPlayerFlag=_flag;}
 bool getNewPlayerFlag(){return newPlayerFlag;}

 std::string getBasePath(){return basePath;}
 void setBasePath(std::string _bp){basePath=_bp;}

 ParallelUtilsOpenMP * getParallelUtils(){return pUtils;}
 ParallelUtilsOpenMP * getParallelUtilsSingleThread(){return pUtilsSingle;}

 BoundaryStrategy * getBoundaryStrategy();
 void registerSteerableObject(SteerableObject *);
 void unregisterSteerableObject(const std::string &);
 SteerableObject * getSteerableObject(const std::string & _objectName);

 void setNumSteps(unsigned int _numSteps){ppdCC3DPtr->numSteps=_numSteps;}
 unsigned int getNumSteps() {return ppdCC3DPtr->numSteps;}
 int getStep() {return currstep;}
 void setStep(int currstep) { this->currstep = currstep; }
 bool isStepping(){return simulatorIsStepping;}
 double getFlip2DimRatio(){return ppdCC3DPtr->flip2DimRatio;}
 Potts3D *getPotts() {return &potts;}
 Simulator *getSimulatorPtr(){return this;}
 ClassRegistry *getClassRegistry() {return classRegistry;}

 void registerConcentrationField(std::string _name,Field3D<float>* _fieldPtr);
 std::map<std::string,Field3D<float>*> & getConcentrationFieldNameMap(){
 return concentrationFieldNameMap;
 }
 void postEvent(CC3DEvent & _ev);

 std::vector<std::string> getConcentrationFieldNameVector();
 Field3D<float>* getConcentrationFieldByName(std::string _fieldName);

 void registerSerializer(Serializer * _serializerPtr){serializerVec.push_back(_serializerPtr);}
 virtual void serialize();

 // Begin Steppable interface
 virtual void start();
 virtual void extraInit();///initialize plugins after all steppables have been initialized
 virtual void step(const unsigned int currentStep);
 virtual void finish();
 // End Steppable interface

 //these two functions are necessary to implement proper cleanup after the simulation
 //1. First it cleans cell inventory, deallocating all dynamic attributes - this has to be done before unloading modules
 //2. It unloads dynamic CC3D modules - plugins and steppables
 void cleanAfterSimulation();
 //unloads all the plugins - plugin destructors are called
 void unloadModules();

 void initializePottsCC3D(CC3DXMLElement * _xmlData);
 void processMetadataCC3D(CC3DXMLElement * _xmlData);

 void initializeCC3D();
 void setPottsParseData(PottsParseData * _ppdPtr){ppdPtr=_ppdPtr;}
 CC3DXMLElement * getCC3DModuleData(std::string _moduleType,std::string _moduleName="");
 void updateCC3DModule(CC3DXMLElement *_element);
 void steer();

 };
};

Few things to notice:

	All CompuCell3D classes are defined within CompuCell3D namespace:

namespace CompuCell3D {
 class ClassRegistry;
 ...
 class COMPUCELLLIB_EXPORT Simulator : public Steppable {
 ...
 };
};

2. Most CC3D objects are dynamically loaded. To make sure an object can be dynamically loaded on Windows we need
to include __decl(dllimport) and __decl(dllexport) class decorators as introduced and required by Microsoft
Visual Studio Compilers. Therefore the C++ macro you see above -COMPUCELLLIB_EXPORT contains required decorators
on Windows and is an empty string on all other operating systems. You can find the details of the Microsoft decorators here:

	https://stackoverflow.com/questions/14980649/macro-for-dllexport-dllimport-switch

	Simulator contains Potts3D object :

namespace CompuCell3D {
 class ClassRegistry;
 ...
 class COMPUCELLLIB_EXPORT Simulator : public Steppable {
 ClassRegistry *classRegistry;

 Potts3D potts;
 ...
 };
};

	Simulator has dictionary of every concentration field used in the simulation

std::map<std::string,Field3D<float>*> concentrationFieldNameMap;

Those fields can be accessed by external code (e.g. Plugin or Steppable code) by using the following Simulator methods:

std::vector<std::string> getConcentrationFieldNameVector();
Field3D<float>* getConcentrationFieldByName(std::string _fieldName);

where getConcentrationFieldNameVector() retrieves a vector of names of the fields used in the simulation and
Field3D<float>* getConcentrationFieldByName(std::string _fieldName) returns a pointer to a field

5. Functions/class members related to streams e.g. std::streambuf * cerrStreamBufOrig; are related to redirecting
output to either console or to a GUI. We will not discuss them here

6. Core simulator functionality, as far as the flow of the simulation is concerned, is implemented in the following
functions:

void initializeCC3D();
virtual void start();
virtual void extraInit();///initialize plugins after all steppables have been initialized
virtual void step(const unsigned int currentStep);
virtual void finish();

	void initializeCC3D() initializes Potts3D object based on the CC3DML content , as well as loadable modules such as

Plugins and Steppables and it is the first Simulator function that is called after parsing of the CC3DML is complete

	void extraInit() is typically executed next and it calls extraInit method that is a member of every CompuCel3D

plugin. Think of this function as a way of performing a second round of initialization but in the situation where
all necessary objects (plugins) are instantiated and properly located inside overseeing objects (Simulator / Potts3D)

	void start() function calls start method for all Steppables that were requested by current simulation.

	void step(const unsigned int currentStep) method executes a single Monte Carlo Step (MCS) by calling

metropolis method from Potts3D;

int flips = potts.metropolis(flipAttempts, ppdCC3DPtr->temperature);

and it also calls step method of every steppable requested by the simulation (including PDE solvers) by calling
step method of a classRegistry member of the Simulator object. You may think about classRegistry as
of a container that stores pointers to Steppable objects. Indeed, if we looks a the
CompuCell3D\ClassRegistry.h declarations we notice that ClassRegistry class is a collection of containers with
extra functionality that simplify code calls from parent objects (e.g. from Simulator):

namespace CompuCell3D {
 class Simulator;

 class COMPUCELLLIB_EXPORT ClassRegistry : public Steppable {
 BasicClassRegistry<Steppable> steppableRegistry;

 typedef std::list<Steppable *> ActiveSteppers_t;
 ActiveSteppers_t activeSteppers;

 typedef std::map<std::string, Steppable *> ActiveSteppersMap_t;
 ActiveSteppersMap_t activeSteppersMap;

 Simulator *simulator;

 std::vector<ParseData *> steppableParseDataVector;

 public:
 ClassRegistry(Simulator *simulator);
 virtual ~ClassRegistry() {}

 Steppable *getStepper(std::string id);

 void addStepper(std::string _type, Steppable *_steppable);

 // Begin Steppable interface
 virtual void extraInit(Simulator *simulator);
 virtual void start();
 virtual void step(const unsigned int currentStep);
 virtual void finish();
 // End Steppable interface

 virtual void initModules(Simulator *_sim);
 };
};

	Finally the void finish() method is responsible finishing the simulation. This seemingly simple task involves

few critical steps: running few Monte Carlo Steps (of metropolis algorithm) with zero temperature - users specify
number of those steps in the CC3DML code (in <Anneal> element), calling finish function of every steppable,
unloading dynamically loaded modules (Plugins and Steppables) to ensure that subsequent simulations can run without
restarting CC3D.

There are clearly more methods in the Simulator objects bu the ones described perform most of the work.

Potts3D

Potts3D module (Potts3D/Potts3D.cpp, Potts3D/Potts3D.h) implements entire logic of the Potts algorithm. Moreover,
this module is responsible for creating cell lattice and Potts3D class has methods that facilitate creation and
destruction of cells. It is worth pointing out that creation and destruction of cells is not limited to calling
new or delete operators but it also involves several steps necessary to ensure that cells created have all the
attributes needed by requested by the user plugins. In CC3D cells’ attributes are added dynamically
and CC3D cells by default have only a small subset of attributes hard-coded. This is a design decision that has this nice
consequence that when developing new plugin one does not have to modify CellG class but rather program the addition
of cell’s attributes entirely in the plugins code. We will cover this in detail in later section.

Let’s examine the content of the Potts3D class (Note: we removed some of the code and are presenting only
code snippets most relevant to current discussion. You are encouraged to look at the original code though as you go over
the material presented here):

class Potts3D :public SteerableObject {
 WatchableField3D<CellG *> *cellFieldG;
 AttributeAdder * attrAdder;
 EnergyFunctionCalculator * energyCalculator;

 BasicClassGroupFactory cellFactoryGroup; //creates aggregate of objects associated with cell

 /// An array of energy functions to be evaluated to determine energy costs.
 std::vector<EnergyFunction *> energyFunctions;
 EnergyFunction * connectivityConstraint;

 std::map<std::string, EnergyFunction *> nameToEnergyFuctionMap;

...

 std::vector<BasicRandomNumberGeneratorNonStatic> randNSVec;

 /// An array of potts steppers. These are called after each potts step.
 std::vector<Stepper *> steppers;

 std::vector<FixedStepper *> fixedSteppers;
 /// The automaton to use. Assuming one automaton per simulation.
 Automaton* automaton;

...

 FluctuationAmplitudeFunction * fluctAmplFcn;

 /// The current total energy of the system.
 double energy;

 std::string boundary_x; // boundary condition for x axiz
 std::string boundary_y; // boundary condition for y axis
 std::string boundary_z; // boundary condition for z axis

 /// This object keeps track of all cells available in the simulations. It allows for simple iteration over all the cells
 /// It becomes useful whenever one has to visit all the cells. Without inventory one would need to go pixel-by-pixel - very inefficient
 CellInventory cellInventory;

 Point3D flipNeighbor;
 std::vector<Point3D> flipNeighborVec; //for parallel access

 double depth;
 //int maxNeighborOrder;
 std::vector<Point3D> neighbors;
 std::vector<unsigned char> frozenTypeVec;///lists types which will remain frozen throughout the simulation
 unsigned int sizeFrozenTypeVec;

 ParallelUtilsOpenMP *pUtils;

public:

 Potts3D();
 Potts3D(const Dim3D dim);
 virtual ~Potts3D();

 void createCellField(const Dim3D dim);
 void resizeCellField(const Dim3D dim, Dim3D shiftVec = Dim3D());

 double getTemperature() const { return temperature; }

 void registerConnectivityConstraint(EnergyFunction * _connectivityConstraint);
 EnergyFunction * getConnectivityConstraint();

 bool checkIfFrozen(unsigned char _type);

...

 void initializeCellTypeMotility(std::vector<CellTypeMotilityData> & _cellTypeMotilityVector);
 void setCellTypeMotilityVec(std::vector<float> & _cellTypeMotilityVec);
 const std::vector<float> & getCellTypeMotilityVec() const { return cellTypeMotilityVec; }

 void setDebugOutputFrequency(unsigned int _freq) { debugOutputFrequency = _freq; }
 void setSimulator(Simulator *_sim) { sim = _sim; }

...

 Point3D getFlipNeighbor();

...

 virtual void createEnergyFunction(std::string _energyFunctionType);
 EnergyFunctionCalculator * getEnergyFunctionCalculator() { return energyCalculator; }

 CellInventory &getCellInventory() { return cellInventory; }

 void clean_cell_field(bool reset_cell_inventory = true);

 virtual void registerAttributeAdder(AttributeAdder * _attrAdder);
 virtual void registerEnergyFunction(EnergyFunction *function);
 virtual void registerEnergyFunctionWithName(EnergyFunction *_function, std::string _functionName);
 virtual void unregisterEnergyFunction(std::string _functionName);

 /// Add the automaton.
 virtual void registerAutomaton(Automaton* autom);

 /// Return the automaton for this simulation.
 virtual Automaton* getAutomaton();
 void setParallelUtils(ParallelUtilsOpenMP *_pUtils) { pUtils = _pUtils; }

 virtual void setFluctuationAmplitudeFunctionByName(std::string _fluctuationAmplitudeFunctionName);
 /// Add a cell field update watcher.

 /// registration of the BCG watcher
 virtual void registerCellGChangeWatcher(CellGChangeWatcher *_watcher);

 /// Register accessor to a class with a cellGroupFactory. Accessor will access a class which is a mamber of a BasicClassGroup
 virtual void registerClassAccessor(BasicClassAccessorBase *_accessor);

 /// Add a potts stepper to be called after each potts step.
 virtual void registerStepper(Stepper *stepper);
 virtual void registerFixedStepper(FixedStepper *fixedStepper, bool _front = false);
 virtual void unregisterFixedStepper(FixedStepper *fixedStepper);

 double getEnergy();

 virtual CellG *createCellG(const Point3D pt, long _clusterId = -1);
 virtual CellG *createCellGSpecifiedIds(const Point3D pt, long _cellId, long _clusterId = -1);
 virtual CellG *createCell(long _clusterId = -1);
 virtual CellG *createCellSpecifiedIds(long _cellId, long _clusterId = -1);

 virtual void destroyCellG(CellG * cell, bool _removeFromInventory = true);

 BasicClassGroupFactory * getCellFactoryGroupPtr() { return &cellFactoryGroup; };

 virtual unsigned int getNumCells() { return cellInventory.getCellInventorySize(); }

 virtual double changeEnergy(Point3D pt, const CellG *newCell,const CellG *oldCell);

 virtual unsigned int metropolis(const unsigned int steps,const double temp);

 typedef unsigned int (Potts3D::*metropolisFcnPtr_t)(const unsigned int, const double);

 metropolisFcnPtr_t metropolisFcnPtr;

 unsigned int metropolisList(const unsigned int steps, const double temp);

 unsigned int metropolisFast(const unsigned int steps, const double temp);
 unsigned int metropolisBoundaryWalker(const unsigned int steps, const double temp);
 void setMetropolisAlgorithm(std::string _algName);

 virtual Field3D<CellG *> *getCellFieldG() { return (Field3D<CellG *> *)cellFieldG; }
 virtual Field3DImpl<CellG *> *getCellFieldGImpl() { return (Field3DImpl<CellG *> *)cellFieldG; }

 //SteerableObject interface
 virtual void update(CC3DXMLElement *_xmlData, bool _fullInitFlag = false);
 virtual std::string steerableName();
 virtual void runSteppers();
 long getRecentlyCreatedClusterId() { return recentlyCreatedClusterId; }
 long getRecentlyCreatedCellId() { return recentlyCreatedCellId; }

};

Starting from the top of the file we notice that cell lattice (WatchableField3D<CellG *> *cellFieldG;) is owned
by Potts3D and created by (void createCellField(const Dim3D dim);,
void resizeCellField(const Dim3D dim, Dim3D shiftVec = Dim3D());) .

The cell lattice is an instance of the WatchableField3D class (which strictly speaking is a template class).
The cell lattice stores pointers to cell objects (type CellG*).
This means that when a single cell single occupies several lattice sites we create one CellG object but store
pointer to this object in all locations of cellFieldG that are assigned to this particular instance of CellG object.
This way CellG objects do not get repeated for every pixel (this would cost too much memory)
but rather are referenced from the cell lattice via pointers.
The reason cell lattice field is called “Watchable” is because this class implements the observer design pattern.
This means that any manipulation of the cell lattice (e.g. assigning cell to a given pixel) triggers calls to multiple registered
observer objects that react to such change. For example, if I am extending a cell by assigning its pointer to the new lattice site
one of the observer that will be called (we also refer to them as lattice monitors) is a module that tracks cell volume
The cell that gains new pixel will get its volume attribute increased by 1 and the cell that loses one pixel will
get its volume decreased by 1. Similarly we could have another observer that updates center of mass coordinates, or one that monitors
inertia tensor. The nice thing about using WatchableField3D template is that all those observers are called automatically
when change in the lattice takes place. Observers are called in teh order in which they were registered. Note, this may
or may not be the order in which they were declared in the CC3DCML. CC3D sometimes requires certain lattice monitors
to be loaded and registered before others and this happens automatically in the CC3D code.
Let’s look at how WatchableField3D works in practice:

WatchableField3D

#ifndef WATCHABLEFIELD3D_H
#define WATCHABLEFIELD3D_H

#include <vector>

#include "Field3DImpl.h"
#include "Field3DChangeWatcher.h"

#include <CompuCell3D/CC3DExceptions.h>

namespace CompuCell3D {

 template<class T>
 class Field3DImpl;

 template<class T>
 class WatchableField3D : public Field3DImpl<T> {
 std::vector<Field3DChangeWatcher<T> *> changeWatchers;

 public:
 /**
 * @param dim The field dimensions
 * @param initialValue The initial value of all data elements in the field.
 */
 WatchableField3D(const Dim3D dim, const T &initialValue) :
 Field3DImpl<T>(dim, initialValue) {}

 virtual ~WatchableField3D() {}

 virtual void addChangeWatcher(Field3DChangeWatcher<T> *watcher) {
 if (!watcher) throw CC3DException("addChangeWatcher() watcher cannot be NULL!");
 changeWatchers.push_back(watcher);
 }

 virtual void set(const Point3D &pt, const T value) {
 T oldValue = Field3DImpl<T>::get(pt);
 Field3DImpl<T>::set(pt, value);

 for (unsigned int i = 0; i < changeWatchers.size(); i++)
 changeWatchers[i]->field3DChange(pt, value, oldValue);
 }

 virtual void set(const Point3D &pt, const Point3D &addPt, const T value) {
 T oldValue = Field3DImpl<T>::get(pt);
 Field3DImpl<T>::set(pt, value);

 for (unsigned int i = 0; i < changeWatchers.size(); i++) {
 changeWatchers[i]->field3DChange(pt, value, oldValue);
 changeWatchers[i]->field3DChange(pt, addPt, value, oldValue);
 }
 }
 };
};
#endif

The WatchableField3D<T> template class inherits from Field3DImpl<T> template. The actual memory allocation takes
place in the Field3DImpl<T> but we will not worry about it here. It is sufficient to mention that Field3DImpl<T>
is tha class that manages cell lattice memory. The important thing is to understand how this automatic calling
of lattice monitors is implemented. The WatchableField3D<T> class has a container
std::vector<Field3DChangeWatcher<T> *> changeWatchers; that stores pointers to lattice monitors. The lattice monitor object
is a class that inherits Field3DChangeWatcher<T> class. In CC3D case T is set to CellG*. The BasicArray
is a thin wrapper around std::vector class and it is one of the legacies of the early CC3D implementations. So
WatchableField3D<T> class has a collection of objects that react to the changes in the cell lattice. How do they react?
If we look at the implementation of virtual void set(const Point3D &pt, const T value) function that modifies the lattice
we can see that this function fetches old value stored in the lattice at location indicated by Point3D pt - in the case of
cell lattice this will be pointers currently stored at this location. It then assigns new value to the field (new CellG pointer)
and then it calls all registered lattice monitors:

for (unsigned int i = 0; i < changeWatchers.getSize(); i++)
 changeWatchers[i]->field3DChange(pt, value, oldValue);

In particular each lattice monitor (here referred to as changeWatcher) must define function called field3DChange
that takes 3 arguments - location of the change pt, new value we assign to the field (e.g. new pointer to CellG object)
and old value that was stored in the field before the assignment (e.g. pointer to the cell whose pixel gets overwritten).

This way the process of updating attributes of CellG object can be handled by appropriate changeWatchers. We will
cover in detail examples of change watchers and things will become clearer then.

Energy Functions

Few lines below declaration of cellField, which as we know is an instance of WatchableField3D<CellG *>
we find the declaration of containers associated with Energy function calculations. At this point we remind that the essence
of Cellular Potts Model is in calculating change of energy of the system due to randomly chosen lattice perturbation
(change of the single pixel). Pointers to energy functions objects are stored inside Potts3D object as follows:

/// An array of energy functions to be evaluated to determine energy costs.
std::vector<EnergyFunction *> energyFunctions;
EnergyFunction * connectivityConstraint;

std::map<std::string, EnergyFunction *> nameToEnergyFuctionMap;

All energy functions are actually objects and they all inherit base class EnergyFunction. EnergyFunction is defined
inside Potts3D/EnergyFunction.h header file:

class EnergyFunction {

public:
 EnergyFunction() {}
 virtual ~EnergyFunction() {}

 virtual double localEnergy(const Point3D &pt){return 0.0;};

 virtual double changeEnergy(const Point3D &pt, const CellG *newCell,const CellG *oldCell)
 {
 if(1!=1);return 0.0;
 }
 virtual std::string toString()
 {
 return std::string("EnergyFunction");
 }
};

Each class that is responsible for calculating a change in the overall system energy due to a proposed pixel copy has to
inherit EnergyFunction. The key function that has to be reimplemented in the derived class is
virtual double changeEnergy(const Point3D &pt, const CellG *newCell,const CellG *oldCell). After Metropolis algorithm
function picks candidate for pixel overwrite it will then call changeEnergy for every element of the energyFunctions vector
defined in class Potts3D (see above). The pt argument is a reference to a location of a pixel
(specified as simple object Point3D) that would be overwritten as result of the pixel copy attempt. The newCell
is pointer to a cell object that will occupy pt location of the cellField (if we accept pixel copy) and the
oldCell is a pointer to a cell that currently occupies lattice location pt.

In CompuCell3D users declare which energy functions they want to use in their simulation so that the number of
energy function in the energyFunctions vector will vary depending on what users specify in the CC3DML or in Python.

Later we will present detailed information on how to implement energy function plugins.

When we peek at the metropolisFast function of the Potts3D class we can see that the change of energy is calculated
in a fairly straightforward way:

Point3D pt;

// Pick a random point
pt.x = rand->getInteger(sectionDims.first.x, sectionDims.second.x - 1);
pt.y = rand->getInteger(sectionDims.first.y, sectionDims.second.y - 1);
pt.z = rand->getInteger(sectionDims.first.z, sectionDims.second.z - 1);

CellG *cell = cellFieldG->getQuick(pt);

if (sizeFrozenTypeVec && cell) {///must also make sure that cell ptr is different 0; Will never freeze medium
 if (checkIfFrozen(cell->type))
 continue;
}

unsigned int directIdx = rand->getInteger(0, maxNeighborIndex);

Neighbor n = boundaryStrategy->getNeighborDirect(pt, directIdx);

if (!n.distance) {
 //if distance is 0 then the neighbor returned is invalid
 continue;
}
Point3D changePixel = n.pt;

//check if changePixel refers to different cell.
CellG* changePixelCell = cellFieldG->getQuick(changePixel);

if (changePixelCell == cell) {
 //skip the rest of the loop if change pixel points to the same cell as pt
 continue;
}

if (sizeFrozenTypeVec && changePixelCell) {///must also make sure that cell ptr is different 0; Will never freeze medium
 if (checkIfFrozen(changePixelCell->type))
 continue;
}

++attemptedECVec[currentWorkNodeNumber];

flipNeighborVec[currentWorkNodeNumber] = pt;

/// change takes place at change pixel and pt is a neighbor of changePixel
// Calculate change in energy

double change = energyCalculator->changeEnergy(changePixel, cell, changePixelCell, i);

We first pick a random lattice location pt and retrieve pointer of a cell that occupies this location:

CellG *cell = cellFieldG->getQuick(pt);

We next make sure that the cell can move i.e. it is not frozen:

if (sizeFrozenTypeVec && cell) {///must also make sure that cell ptr is different 0; Will never freeze medium
 if (checkIfFrozen(cell->type))
 continue;
}

Next we pick a random pixel out of set of neighbors of pixel pt:

We use BoundaryStrategy object pointed by boundaryStrategy to carry out all operations related to pixel neighbor
operations. we will cover it later. For now it is important to remember that tracking and operating on pixel neighbors is
usually done via BoundaryStrategy and this helps greatly when we have to deal with periodic boundary conditions
pixels residing close to the edge of teh lattice or classifying neighbor order of pixels.
In this example we use boundary strategy to pick a neighbor changePixel of the pt and verify that this neighbor is a
legitimate neighbor - if (!n.distance). We next fetch cell that occupies changePixel:

CellG* changePixelCell = cellFieldG->getQuick(changePixel);

and verify that changePixelCell is different than cell at the location pt. We do this because overwriting pixel
with the same cell pointer does not change lattice configuration at all. After also confirming that the changePixelCell
is not frozen we compute change of energy if pixel `changePixel currently occupied by changePixelCell
were to be overwritten by cell currently residing at location pt. Or using double changeEnergy(const Point3D &pt, const CellG *newCell,const CellG *oldCell)
terminology we can say that pt <-> changePixel, newCell <-> cell and oldCell <-> changePixelCell where
we used <-> symbol to illustrate how changeEnergy function arguments will be assigned in the call.

Interestingly, we call changeEnergy method of the object called energyCalculator:

double change = energyCalculator->changeEnergy(changePixel, cell, changePixelCell, i);

There is no magic here. If we look inside this function (Potts3D/EnergyFunctionCalculator.cpp) we see
familiar summation over all values returned by changeEnergy of each EnergyFunction object:

double EnergyFunctionCalculator::changeEnergy(Point3D &pt, const CellG *newCell,const CellG *oldCell,const unsigned int _flipAttempt){

 double change = 0;
 for (unsigned int i = 0; i < energyFunctions.size(); i++){
 change += energyFunctions[i]->changeEnergy(pt, newCell, oldCell);
 }
 return change;
}

The reason we use EnergyFunctionCalculator object instead of implementing summation loop inside metropolisFast function
is to handle additional tasks that might be associated with calculating energies - for example collecting information
on every energy term associated with every pixel copy attempts. In this case we would use not EnergyFunctionCalculator but
a more sophisticated version of this class called EnergyFunctionCalculatorStatistics

Steppers

A vector of Stepper objects - std::vector<Stepper *> steppers; is also a part of Potts3D object.
Stepper objects all inherit from Stepper class defined in Potts3D/Stepper.h header file:

class Stepper {
public:
 virtual void step() = 0;
};

This is a very simple base class that defines only one function called step. More important is the question
where and why we need this function. Steppers are called at the very end of the pixel copy attempt i.e. after
all energy function calculation and if pixel copy was accepted after modifying cellField. Steppers are called
always regardless whether pixel copy was accepted or not. A canonical example of the Stepper object is VolumeTracker
declared and defined in plugins/VolumeTracker/VolumeTrackerPlugin.h and
plugins/VolumeTracker/VolumeTrackerPlugin.cpp. VolumeTracker plugin tracks volume of each cell and ensures that
cells’ volume information is correct. It also removes dead cells i./e. those cells whose volume reached 0. In a sense it
performs cleanup actions. However cleanup needs to be done as a very last action associated with pixel copy attempt.
It would be a bad idea to do it earlier because we could remove cell object that might still be needed by other actions
related to e.g. updating cellField.

Cell Inventory

cellInventory as its name suggest is an object that serves as a container for pointers to cell objects but it also
allows fast lookups of particular cells. This is one of he most frequently accessed objects from Python
(although we do it somewhat indirectly). Many of the Python modules you write for CC3D include the following loop:

for cell in self.cell_list:
 ...

What we are doing here is we iterate over every cell in the simulation. Internally the self.cell_list Python object
accesses cellInventory. when we create a cell using Potts3D’s method createCellG we first construct cell object
and then insert it into cell inventory. Similarly when we delete cell object using destroyCellG (method of Potts3D)
we first remove the cell object from inventory and then carryout its destruction
(which, as you know, is not just simple call to the C++ delete operator). It is worth knowing that in addition to
cell inventories e track cell clusters and even links between cells (FocalPointPlasticityPlugin) via various
“inventory” objects.

Acceptance Function and Fluctuation Amplitude Function

A key component of the Cellular Potts Model simulation is the so called acceptance function. It is the function
that is responsible for they dynamic behavior of the simulation. It takes as an input a change in energy due to
proposed pixel copy and outputs a probability with which this proposed pixel copy attempt will be accepted

Canonical formulation of the Cellular Potts Model acceptance function is as follows:

 \begin{cases}
 & P = e^{-(\Delta E-\delta)/kT} \text{ if } \Delta E > 0 \\
 & 1 \text{ if } \Delta E > 0 \\
 & 1/2 \text{ if } \Delta E = 0
 \end{cases}
where \(\Delta E\) is a change in the energy due to proposed pixel copy attempt \(T\) is the the “temperature” which is
a measure of cell membrane fluctuation amplitude and \(k\) is a constant which by default is set to 1 and
\(\delta\) is an energy offset by default set to 0

The higher the T is the higher the chance of accepting pixel copy attempts that result in higher energy
Those appear to be the “wrong” kind of attempts but it turns out that they often save the simulation from being stuck
in a local minimum so ensuring some of them are accepted is essential.

The “temperature” or membrane fluctuation amplitude parameter can be set globally and many of the simulations
using this convention. However, you can imagine that certain cells may have different membrane fluctuation amplitudes
(different “temperatures”). To account for this fact and the fact that the two cells involved in pixel copy attempt
may have different “temperatures” we use objects that derive from FluctuationAmplitudeFunction and whose goal is
to compute effective “temperature” parameter associated with pixel copy based on the two “temperature” parameters that come
from two cells involved in pixel copy. There are many possibilities here but the default strategy is to choose minimum
of the two “temperatures”. The details can be found in Potts3D/StandardFluctuationAmplitudeFunctions.h and
Potts3D/StandardFluctuationAmplitudeFunctions.cpp. We can also create new fluctuation amplitude functions
depending on our needs.

 Building Steppable

Building Steppable

It is probably best to start discussing extension of CC3D by showing a relatively simple example of a steppable
written in C++.
In typical scenario steppables are written in Python. There are three main reasons for that 1) No compilation is
required.
2) The code is more compact and easier to write than C++. 3) Python has a rich set of libraries that make
scientific computation easily accessible.
However, writing a steppable in C++ is not that much more difficult, as you will see shortly, and you are almost
guaranteed that your code will run orders of magnitude faster.
Let me rephrase this last sentence - a typical code written in C++ is orders of magnitude faster than equivalent
code written in pure Python. Since most of the steppable code consists of iterating over all cells and adjusting
their attributes, C++ will perform this task much faster.

Getting started

Before you start developing CC3D C++ extension modules, you need to clone CC3D repository.

mkdir CC3D_DEVELOP
cd CC3D_DEVELOP
git clone https://github.com/CompuCell3D/CompuCell3D.git .

It is optional to checkout a particular branch of CC3D, but most often you will work with master branch. If ,
however, you want to checkout a branch - you would type something like this:

git checkout 4.0.0

[image: git_setup]

At this point you have complete code in CC3D_DEVELOP directory. And in addition

Now we open Twedit++ - you need to have “standard” installation of CC3D on your machine available - and go to CC3D C++
menu and choose Generate New Module... entry and fill out the dialog box:

[image: twedit_steppable_wizard]

Note

In this example we show how to generate steppable code template in the “main” CC3D code. However, a more frequently used scenario is to Generate steppable code in “DeveloperZone” folder. We will show it in the subsequent chapter

 Building Growth Steppable In the Developer Zone folder

Building Growth Steppable In the Developer Zone folder

Quite often you will want to build a steppable in a “non-intrusive” way i.e. without adding it to the main
CC3D code-base. The way to do it is to utilize functionality of DeveloperZone.

This time we will use Windows system and our CC3D git repository is cloned to D:\CC3D_PY3_GIT\CompuCell3D

To add a steppable or plugin in the DeveloperZone you open up Twedit and from CC3D C++ menu select
Generate New Module....

[image: dev_zone_1]

Notice that in the Module Directory in the dialog box we put D:\CC3D_PY3_GIT\CompuCell3D\DeveloperZone.
Previously we put there a path to the Steppable folder in the main CC3D Code base (give where our repository is cloned
this path would be D:\CC3D_PY3_GIT\CompuCell3D\core\CompuCell3D\steppables\)

Notice that we also checked Python Wrap option to generate Python bindings. We will show you how you ca
be creative here and leverage both XML and Python as a way to pass parameters to the Steppable. As you
remember you do not have to generate Python bindings and it is perfectly OK to to stick with C++ and XML.

After we press OK button Twedit++ will generate , a template Steppable code:

[image: dev_zone_2]

Now we copy code from our earlier example into appropriate files - we are only showing files that we modified:
GrowthSteppable.h :

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

	#ifndef GROWTHSTEPPABLESTEPPABLE_H
#define GROWTHSTEPPABLESTEPPABLE_H
#include <CompuCell3D/CC3D.h>
#include "GrowthSteppableDLLSpecifier.h"

namespace CompuCell3D {

 template <class T> class Field3D;

 template <class T> class WatchableField3D;

 class Potts3D;

 class Automaton;

 class BoundaryStrategy;

 class CellInventory;

 class CellG;

 class GROWTHSTEPPABLE_EXPORT GrowthSteppable : public Steppable {

 WatchableField3D<CellG *> *cellFieldG;

 Simulator * sim;

 Potts3D *potts;

 CC3DXMLElement *xmlData;

 Automaton *automaton;

 BoundaryStrategy *boundaryStrategy;

 CellInventory * cellInventoryPtr;

 Dim3D fieldDim;

 public:

 GrowthSteppable ();

 virtual ~GrowthSteppable ();

 std::map<unsigned int, double> growthRateMap;

 // SimObject interface

 virtual void init(Simulator *simulator, CC3DXMLElement *_xmlData=0);

 virtual void extraInit(Simulator *simulator);

 //steppable interface

 virtual void start();

 virtual void step(const unsigned int currentStep);

 virtual void finish() {}

 //SteerableObject interface

 virtual void update(CC3DXMLElement *_xmlData, bool _fullInitFlag=false);

 virtual std::string steerableName();

 virtual std::string toString();

 };

};

#endif

and GrowthSteppable.cpp

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107

	#include <CompuCell3D/CC3D.h>
using namespace CompuCell3D;
using namespace std;
#include "GrowthSteppable.h"

GrowthSteppable::GrowthSteppable() :
cellFieldG(0),sim(0),potts(0),xmlData(0),
boundaryStrategy(0),automaton(0),cellInventoryPtr(0){}

GrowthSteppable::~GrowthSteppable() {

}

void GrowthSteppable::init(Simulator *simulator, CC3DXMLElement *_xmlData) {

 xmlData=_xmlData;

 potts = simulator->getPotts();

 cellInventoryPtr=& potts->getCellInventory();

 sim=simulator;

 cellFieldG = (WatchableField3D<CellG *> *)potts->getCellFieldG();

 fieldDim=cellFieldG->getDim();

 simulator->registerSteerableObject(this);

 update(_xmlData,true);
}

void GrowthSteppable::extraInit(Simulator *simulator){

}

void GrowthSteppable::start(){

 CellInventory::cellInventoryIterator cInvItr;
 CellG * cell = 0;

 for (cInvItr = cellInventoryPtr->cellInventoryBegin(); cInvItr != cellInventoryPtr->cellInventoryEnd(); ++cInvItr)
 {

 cell = cellInventoryPtr->getCell(cInvItr);
 cell->targetVolume = 25.0;
 cell->lambdaVolume = 2.0;
 }
}

void GrowthSteppable::step(const unsigned int currentStep){

 CellInventory::cellInventoryIterator cInvItr;

 CellG * cell=0;

 if (currentStep > 100)
 return;

 std::map<unsigned int, double>::iterator mitr;

 for(cInvItr=cellInventoryPtr->cellInventoryBegin() ; cInvItr !=cellInventoryPtr->cellInventoryEnd() ;++cInvItr)
 {

 cell=cellInventoryPtr->getCell(cInvItr);

 mitr = this->growthRateMap.find((unsigned int)cell->type);

 if (mitr != this->growthRateMap.end()){
 cell->targetVolume += mitr->second;
 }

 }

}

void GrowthSteppable::update(CC3DXMLElement *_xmlData, bool _fullInitFlag){

 automaton = potts->getAutomaton();

 ASSERT_OR_THROW("CELL TYPE PLUGIN WAS NOT PROPERLY INITIALIZED YET. MAKE SURE THIS IS THE FIRST PLUGIN THAT YOU SET", automaton)

 set<unsigned char> cellTypesSet;

 CC3DXMLElementList growthVec = _xmlData->getElements("GrowthRate");

 for (int i = 0; i < growthVec.size(); ++i) {
 unsigned int cellType = growthVec[i]->getAttributeAsUInt("CellType");
 double growthRateTmp = growthVec[i]->getAttributeAsDouble("Rate");
 this->growthRateMap[cellType] = growthRateTmp;
 }

 //boundaryStrategy has information about pixel neighbors
 boundaryStrategy=BoundaryStrategy::getInstance();

}

std::string GrowthSteppable::toString(){

 return "GrowthSteppable";
}

std::string GrowthSteppable::steerableName(){

 return toString();
}

As you can see based on the previous discussion the update function where we parse XML is designed to
handle the following syntax for the GrowthSteppable:

<Steppable Type="GrowthSteppable">
 <GrowthRate CellType="1" Rate="1.3"/>
 <GrowthRate CellType="2" Rate="1.7"/>
</Steppable>

Note

Starting from version 4.3.0 of CC3D the DeveloperZone compilation setup (for any compiler) is is done automatically. All you need to do is to follow procedure outlined in Configuring Developer Zone

 Adding Python Bindings To Steppable in DeveloperZone

Adding Python Bindings To Steppable in DeveloperZone

In the previous example we controled entire simulation from C++. This is perfectly fine and will give you optimal
performance. However sometimes it may make sense to add Python bindings to your module . Especially if the
functions you wil call from python will not be called many times - functions calls in Python are much slower than in C++.

In addition to this if your entire code is in C++ every change you make to the code will require compilation and
installation. This is is not a big deal but takes time and is more error prone than using well designed scripting
interface. However, do not feel that you need to use Python bindings for your newly created C++ modules. They are
optional and it is perfectly fine to operate in C++ space.

Nevertheless we would like to show you how to add and use Python bindings if you feel it will be beneficial
for your simulation.

If you remember, the first step to generate steppable code using Twedit++ is to choose whether you like to add Python
bindings or not.

[image: dev_zone_1]

In this first dialog box we checked Python Wrap option and therefore we already generated Python bindings. They are
stored in SWIG file in DeveloperZone/pyinterface/CompuCellExtraModules/CompuCellExtraModules.i:

%module ("threads"=1) CompuCellExtraModules
%include "typemaps.i"
%include <windows.i>

%{
#include "ParseData.h"
#include "ParserStorage.h"
#include <CompuCell3D/Simulator.h>
#include <CompuCell3D/Potts3D/Potts3D.h>

#include <BasicUtils/BasicClassAccessor.h>
#include <BasicUtils/BasicClassGroup.h> //had to include it to avoid problems with template instantiation

// *** PUT YOUR PLUGIN PARSE DATA AND PLUGIN FILES HERE ***

#include <SimpleVolume/SimpleVolumePlugin.h>

#include <VolumeMean/VolumeMean.h>

//AutogeneratedModules1 - DO NOT REMOVE THIS LINE IT IS USED BY TWEDIT TO LOCATE CODE INSERTION POINT
//GrowthSteppable_autogenerated

#include <GrowthSteppable/GrowthSteppable.h>

// *** END OF SECTION ********************************** **

//have to include all export definitions for modules which are arapped to avoid problems with interpreting by swig win32 specific c++ extensions...
#define SIMPLEVOLUME_EXPORT
#define VOLUMEMEAN_EXPORT
//AutogeneratedModules2 - DO NOT REMOVE THIS LINE IT IS USED BY TWEDIT TO LOCATE CODE INSERTION POINT
//GrowthSteppable_autogenerated
#define GROWTHSTEPPABLE_EXPORT

#include <iostream>

using namespace std;
using namespace CompuCell3D;

%}

// C++ std::string handling
%include "std_string.i"

// C++ std::map handling
%include "std_map.i"

// C++ std::map handling
%include "std_set.i"

// C++ std::vector handling
%include "std_vector.i"

//have to include all export definitions for modules which are arapped to avoid problems with interpreting by swig win32 specific c++ extensions...
#define SIMPLEVOLUME_EXPORT
#define VOLUMEMEAN_EXPORT

//AutogeneratedModules3 - DO NOT REMOVE THIS LINE IT IS USED BY TWEDIT TO LOCATE CODE INSERTION POINT
//GrowthSteppable_autogenerated
#define GROWTHSTEPPABLE_EXPORT

%include <BasicUtils/BasicClassAccessor.h>
%include <BasicUtils/BasicClassGroup.h> //had to include it to avoid problems with template instantiation

%include "ParseData.h"
%include "ParserStorage.h"

// *** PUT YOUR PLUGIN PARSE DATA AND PLUGIN FILES HERE ***
// REMEMBER TO CHANGE #include to %include

%include <SimpleVolume/SimpleVolumePlugin.h>
// %include <SimpleVolume/SimpleVolumeParseData.h>

// THIS IS VERY IMORTANT STETEMENT WITHOUT IT SWIG will produce incorrect wrapper code which will compile but will not work
using namespace CompuCell3D;

%inline %{
 SimpleVolumePlugin * reinterpretSimpleVolumePlugin(Plugin * _plugin){
 return (SimpleVolumePlugin *)_plugin;
 }

 SimpleVolumePlugin * getSimpleVolumePlugin(){
 return (SimpleVolumePlugin *)Simulator::pluginManager.get("SimpleVolume");
 }

%}

%include <VolumeMean/VolumeMean.h>

%inline %{
 VolumeMean * reinterpretVolumeMean(Steppable * _steppable){
 return (VolumeMean *)_steppable;
 }

 VolumeMean * getVolumeMeanSteppable(){
 return (VolumeMean *)Simulator::steppableManager.get("VolumeMean");
 }

%}

//AutogeneratedModules4 - DO NOT REMOVE THIS LINE IT IS USED BY TWEDIT TO LOCATE CODE INSERTION POINT
//GrowthSteppable_autogenerated

%include <GrowthSteppable/GrowthSteppable.h>
%inline %{

 GrowthSteppable * getGrowthSteppable(){

 return (GrowthSteppable *)Simulator::steppableManager.get("GrowthSteppable");
 }

%}

We are not going to explain how SWIG wrappers work here but if you look at the file and look for occurrences of
GrowthSteppable you can see that adding your own steppable to the SWIG wrapper generator is fairly easy. On top
of that if you use Twedit++ it will generate wrapper code for you.

Note

At the top of the wrapper file we find %module ("threads"=1) CompuCellExtraModules . This tells us that the Python module we develop will be called CompuCellExtraModules.

 Computing Heterotypic Boundary Length

Computing Heterotypic Boundary Length

Heterotypic boundary surface (or length in 2D) is total surface of contact between all cells of two types. For example when you have 2
cells of type 1 and 100 cells of type 2 the heterotypic surface between thw two will be a sum of all contact
surfaces between the two types.
In this example we are not going to show every step how we generate the steppable using Twedit. We have shown this
earlier and here we will concentrate on the actual code.

This example is a bit more advanced but we will explain clearly every line of code.

The module that we generated is called HeterotypicBoundaryLength. We then click Configure and Generate in
the CMake Gui and start writing actual code. We will first implement function that walks over entire lattice and
computes heterotypic surface (or length in 2D) between all cells of different types.

All C++ files can be found in DeveloperZone/Demos/HeterotypicBoundarySurface and Python bindings are , as usual in
DeveloperZone/pyinterface/CompuCellExtraModules/CompuCellExtraModules.i. The simulation example that uses our newly
created module is in DeveloperZone/Demos/HeterotypicBoundarySurface

Here is the header file for our new steppable:

#ifndef HETEROTYPICBOUNDARYLENGTHSTEPPABLE_H
#define HETEROTYPICBOUNDARYLENGTHSTEPPABLE_H
#include <CompuCell3D/CC3D.h>
#include "HeterotypicBoundaryLengthDLLSpecifier.h"

namespace CompuCell3D {

 template <class T> class Field3D;
 template <class T> class WatchableField3D;

 class Potts3D;
 class Automaton;
 class BoundaryStrategy;
 class CellInventory;
 class CellG;

 class HETEROTYPICBOUNDARYLENGTH_EXPORT HeterotypicBoundaryLength : public Steppable {

 WatchableField3D<CellG *> *cellFieldG;

 Simulator * sim;
 Potts3D *potts;
 CC3DXMLElement *xmlData;
 Automaton *automaton;
 BoundaryStrategy *boundaryStrategy;
 CellInventory * cellInventoryPtr;
 Dim3D fieldDim;

 public:

 HeterotypicBoundaryLength ();

 virtual ~HeterotypicBoundaryLength ();

 // new methods and members

 std::map<unsigned int, double> typePairHTSurfaceMap;

 unsigned int typePairIndex(unsigned int cellType1, unsigned int cellType2);
 void calculateHeterotypicSurface();
 double getHeterotypicSurface(unsigned int cellType1, unsigned int cellType2);

 // SimObject interface

 virtual void init(Simulator *simulator, CC3DXMLElement *_xmlData=0);

 virtual void extraInit(Simulator *simulator);

 //steppable interface

 virtual void start();

 virtual void step(const unsigned int currentStep);

 virtual void finish() {}

 //SteerableObject interface

 virtual void update(CC3DXMLElement *_xmlData, bool _fullInitFlag=false);

 virtual std::string steerableName();

 virtual std::string toString();

 };

};

#endif

we added few methods and one class member there:

// new methods and members

std::map<unsigned int, double> typePairHTSurfaceMap;

unsigned int typePairIndex(unsigned int cellType1, unsigned int cellType2);
void calculateHeterotypicSurface();
double getHeterotypicSurface(unsigned int cellType1, unsigned int cellType2);

The typePairHTSurfaceMap is a dictionary (map) that will store heterotypic boundary surface between different cell
types. Notice that we will encode pair of cell types as a single unsigned integer (hence a key to the dictionary
is unsigned integer). To do this we will use convenience function
unsigned int typePairIndex(unsigned int cellType1, unsigned int cellType2) that takes as its arguments two
unsigned integers that denote cell type 1 and cell type 2. Here is the implementation of this function:

unsigned int HeterotypicBoundaryLength::typePairIndex(unsigned int cellType1, unsigned int cellType2) {
 return 256 * cellType2 + cellType1;
}

we take advantage of the fact that the number of cell types in CC3D is limited to 256 and the index this function
returns looks analogous to the index you woudl use to access a matrix if you were to store a matrix as 1D array.

Next we have two functions calculateHeterotypicSurface() that computed actual total heterotypic surface between
all cell types and double getHeterotypicSurface(unsigned int cellType1, unsigned int cellType2) that given two types
it returns a boundary between them.

Let’s start analyzing code for calculateHeterotypicSurface function:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	void HeterotypicBoundaryLength::calculateHeterotypicSurface() {

 unsigned int maxNeighborIndex = this->boundaryStrategy->getMaxNeighborIndexFromNeighborOrder(1);
 Neighbor neighbor;

 CellG *nCell = 0;

 this->typePairHTSurfaceMap.clear();

 // note: unit surface is different on a hex lattice. if you are runnign
 // this steppable on hex lattice you need to adjust it. Remember that on hex lattice unit length and unit surface have different values
 double unit_surface = 1.0;

 cerr << "Calculating HTBL for all cell type combinations" << endl;

 for (unsigned int x = 0; x < fieldDim.x; ++x)
 for (unsigned int y = 0; y < fieldDim.y; ++y)
 for (unsigned int z = 0; z < fieldDim.z; ++z) {
 Point3D pt(x, y, z);
 CellG *cell = this->cellFieldG->get(pt);

 unsigned int cell_type = 0;
 if (cell) {
 cell_type = (unsigned int)cell->type;
 }

 for (unsigned int nIdx = 0; nIdx <= maxNeighborIndex; ++nIdx) {
 neighbor = boundaryStrategy->getNeighborDirect(const_cast<Point3D&>(pt), nIdx);
 if (!neighbor.distance) {
 //if distance is 0 then the neighbor returned is invalid
 continue;
 }

 nCell = this->cellFieldG->get(neighbor.pt);
 unsigned int n_cell_type = 0;
 if (nCell) {
 n_cell_type = (unsigned int)nCell->type;
 }

 if (nCell != cell) {
 unsigned int pair_index_1 = typePairIndex(cell_type, n_cell_type);
 unsigned int pair_index_2 = typePairIndex(n_cell_type, cell_type);
 this->typePairHTSurfaceMap[pair_index_1] += unit_surface;
 if (pair_index_1 != pair_index_2) {
 this->typePairHTSurfaceMap[pair_index_2] += unit_surface;
 }

 }

 }

 }

}

We will be iterating over lattice pixels. Every lattice pixel has neighbors of different order but 1-st order neighbors
are simply adjacent pixels. BoundaryStrategy is an object that facilitates iteration over pixel neighbors and it
also keeps track of boundary conditions, pixels, adjacent to the boundary etc. so that you can write a simpler code. All
we need to do to iterate over 1-st order pixel neighbors is to know what is the maximum number of them and this is what
we do in this line:

unsigned int maxNeighborIndex = this->boundaryStrategy->getMaxNeighborIndexFromNeighborOrder(1);

We get maximum index of a 1-st order pixel (BoundaryStrategy keeps them in a vector and we are getting max index of
this vector). On 2D. cartesian lattice there could be up to 4 such neighbors hence the max vector index is 3 (we start
counting from 0).

We next clear the map where we store our results because each time we call this function it wil be incrementing
the values so if we did not clear we would be starting counting from different value that zero.

At line 16 we start triple loop where we iterate over all lattice pixels. This might not be the most efficient method
but it is the simplest to code.

In lines 19 and 20 we get a cell that resides at a given pixel. If the cell pointer returned is NULL we are dealing
with Medium and cell and this is why in lines 23-25 we check if the cell is different than NULL
(if (cell)) before accessing its type. If it is null that we do not execute line 24 and the cell type is 0 as it
should be for the Medium.

At line 27 we start iterating over neighbors of the current pixel (Point3D pt(x, y, z)). This is where we do
actual calculations. Code in line 28 fetches one of the neighbor of pixel pt(x, y, z). In line 30 we check
if this neighbor is a valid one (e.g. if you are at the edge of the lattice we may get pixel that is outside of the
lattice and then if neighbor.distance is zero we know we are dealing with invalid pixel), hence in the line 31 we
skip the rest of the loop. If, however, the pixel is valid then we get a cell that resides at the neighboring pixel (
line 34):

In lines 35-38 we extract cell type of neighbor cell , again we have to be mindful of Medium as we did in
lines 22-25.

Finally, lines 41-45 contain actual code that increments boundary surface between two cell types. This code runs only
if nCell and cell i.e. cells belonging to adjacent pixels are different cells. In this case we
compute index for type of nCell and type of cell (

unsigned int pair_index_1 = typePairIndex(cell_type, n_cell_type);)

and increment appropriate entry in the this->typePairHTSurfaceMap - lines 43. Notice that we also permute
cell types in call to typePairIndex - line 44-45. so that when we access boundary length between cell type 1 and 2
it will give us the same value as between cell types 2 and 1. But we do this only when the two types are different

Obviously, we are double-counting and we correct this in the function that returns heterotypic surfaces:

double HeterotypicBoundaryLength::getHeterotypicSurface(unsigned int cellType1, unsigned int cellType2) {
 unsigned int pair_index = typePairIndex(cellType1, cellType2);

 double heterotypic_surface = this->typePairHTSurfaceMap[pair_index]/2.0;

 return heterotypic_surface;
}

Running the Simulation with Heterotypic Surface Calculator

The simulation code is quite easy to write as it follows the same pattern that we encountered in the previous chapter
where we introduced Python bindings to the C++ steppable. We start with an XML file:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	<CompuCell3D Revision="20190604" Version="4.0.0">
 <Potts>
 <!-- Basic properties of CPM (GGH) algorithm -->
 <Dimensions x="256" y="256" z="1"/>
 <Steps>100000</Steps>
 <Temperature>10.0</Temperature>
 <NeighborOrder>1</NeighborOrder>
 </Potts>

 <Plugin Name="CellType">
 <!-- Listing all cell types in the simulation -->
 <CellType TypeId="0" TypeName="Medium"/>
 <CellType TypeId="1" TypeName="A"/>
 <CellType TypeId="2" TypeName="B"/>
 </Plugin>

 <Plugin Name="Volume">
 <VolumeEnergyParameters CellType="A" LambdaVolume="2.0" TargetVolume="50"/>
 <VolumeEnergyParameters CellType="B" LambdaVolume="2.0" TargetVolume="50"/>
 </Plugin>

 <Plugin Name="CenterOfMass">
 <!-- Module tracking center of mass of each cell -->
 </Plugin>

 <Plugin Name="Contact">
 <!-- Specification of adhesion energies -->
 <Energy Type1="Medium" Type2="Medium">10.0</Energy>
 <Energy Type1="Medium" Type2="A">10.0</Energy>
 <Energy Type1="Medium" Type2="B">10.0</Energy>
 <Energy Type1="A" Type2="A">10.0</Energy>
 <Energy Type1="A" Type2="B">10.0</Energy>
 <Energy Type1="B" Type2="B">10.0</Energy>
 <NeighborOrder>4</NeighborOrder>
 </Plugin>

 <Steppable Type="UniformInitializer">
 <!-- Initial layout of cells in the form of rectangular slab -->
 <Region>
 <BoxMin x="51" y="51" z="0"/>
 <BoxMax x="204" y="204" z="1"/>
 <Gap>0</Gap>
 <Width>7</Width>
 <Types>A,B</Types>
 </Region>
 </Steppable>

 <Steppable Type="HeterotypicBoundaryLength"/>

</CompuCell3D>

It is Twedit-generated XML file that has basic energy terms (Volume and Contact Constraints) plus initializer and
at the end in line 48 we add our new HeterotypicBoundaryLength steppable. Notice that this is a one-line call
because we are not really passing any parameters to the steppable from the XML and our
update(CC3DXMLElement *_xmlData, bool _fullInitFlag=false) method does not contain any code that parses XML.

Note

It is important that every module (steppable, plugin) that you develop in C++ be instantiated in XML. Otherwise it will not be loaded and you will not be able to use it from Python. You can, however, write Python code that will properly load and initialize your module but this approach is way more complex than adding a simple line or lines in the XML.

 Attaching Custom Attributes To Cells

Attaching Custom Attributes To Cells

Cells in CompuCell3D are represented by CellG class - see CompuCell3D/core/CompuCell3D/Potts3D/Cell.h

#ifndef CELL_H
#define CELL_H

#ifndef PyObject_HEAD
struct _object; //forward declare
typedef _object PyObject; //type redefinition
#endif

class BasicClassGroup;

namespace CompuCell3D {

 /**
 * A Potts3D cell.
 */

 class CellG{
 public:
 typedef unsigned char CellType_t;
 CellG():
 volume(0),
 targetVolume(0.0),
 lambdaVolume(0.0),
 surface(0),
 targetSurface(0.0),
 lambdaSurface(0.0),
 clusterSurface(0.0),
 targetClusterSurface(0.0),
 lambdaClusterSurface(0.0),
 type(0),
 xCM(0),yCM(0),zCM(0),
 xCOM(0),yCOM(0),zCOM(0),
 xCOMPrev(0),yCOMPrev(0),zCOMPrev(0),
 iXX(0), iXY(0), iXZ(0), iYY(0), iYZ(0), iZZ(0),
 lX(0.0),
 lY(0.0),
 lZ(0.0),
 lambdaVecX(0.0),
 lambdaVecY(0.0),
 lambdaVecZ(0.0),
 flag(0),
 id(0),
 clusterId(0),
 fluctAmpl(-1.0),
 lambdaMotility(0.0),
 biasVecX(0.0),
 biasVecY(0.0),
 biasVecZ(0.0),
 connectivityOn(false),
 extraAttribPtr(0),
 pyAttrib(0)

 {}
 long volume;
 float targetVolume;
 float lambdaVolume;
 double surface;
 float targetSurface;
 float angle;
 float lambdaSurface;
 double clusterSurface;
 float targetClusterSurface;
 float lambdaClusterSurface;
 unsigned char type;
 unsigned char subtype;
 double xCM,yCM,zCM; // numerator of center of mass expression (components)
 double xCOM,yCOM,zCOM; // numerator of center of mass expression (components)
 double xCOMPrev,yCOMPrev,zCOMPrev; // previous center of mass
 double iXX, iXY, iXZ, iYY, iYZ, iZZ; // tensor of inertia components
 float lX,lY,lZ; //orientation vector components - set by MomentsOfInertia Plugin - read only
 float ecc; // cell eccentricity
 float lambdaVecX,lambdaVecY,lambdaVecZ; // external potential lambda vector components
 unsigned char flag;
 float averageConcentration;
 long id;
 long clusterId;
 double fluctAmpl;
 double lambdaMotility;
 double biasVecX;
 double biasVecY;
 double biasVecZ;
 bool connectivityOn;
 BasicClassGroup *extraAttribPtr;

 PyObject *pyAttrib;
 };

 class Cell {
 };

 class CellPtr{
 public:
 Cell * cellPtr;
 };
};
#endif

As you can see CellG has a number of “standard” attributes. But very often you would like to add new attributes. For
example you would like to keep last 50 center of mass positions of each cell to be able to plot recent cell trajectory.
How would you do this? A simple approach would be to attach e.g. std::queue to the CellG class. This is a
valid approach but it has one major disadvantage. It will require you to recompile almost entire C++ code because
CellG class is a core class that is used by virtually every single CompuCell3D module. Also, if you would like to
share the code with your colleague he would also need to recompile his or her copy of CC3D. Hence while this simple
approach would certainly work it it is not the most convenient way of adding attributes.
What about Python then? Yes, adding new attribute in Python is very simple:

cell.dict['cell_x_positions'] = [0.0]*50
cell.dict['cell_y_positions'] = [0.0]*50
cell.dict['cell_z_positions'] = [0.0]*50

Here, we added 3 attributes each one representing last 50 positions x, y, or z coordinates of center of mass. We
initialized them to be 0.0 hence the code [0.0]*50. In Python when you multiply list by an integer it will return
a list that is contains multiple copies of the list you originally multiplied (in our case we will get a list
with 50 zeros).

Python approach would certainly work, but what if, for efficiency reasons, you want to stay in C++ world. There is a
solution for this that scales nicely i.e. it does not require recompilation of entire code and it allows to attach
any C++ class as a cell attribute. This is what we will teaching you next.

Constructing Steppable with Custom Class Attached to Each Cell

We begin the usual way - open Twedit++, fo to CC3D C++ menu and choose Generate New Module...` from the
menu. There, as before we fill out steppable (we call it CustomCellAttributeSteppable) details -
making sure to check Developer Zone radio button, but in addition to this we also check Attach Cell Attribute
check box. This ensures that the code that Twedit++ generates contains code that will inform CC3D cell factory
object to attach additional cell attribute.

[image: custom_attrs_01]

We press OK button and the steppables code with additional attribute
will get generated and the code will open in Twedit++ tabs:

[image: custom_attrs_02]

The class shown in the editor window will be used during cell construction to create object of this class
and attach it to each cell. In other words, once the steppable we have just created gets loaded it will tell CC3D
to attach to each cell an object of class CustomCellAttributeSteppableData

#ifndef CUSTOMCELLATTRIBUTESTEPPABLEPATA_H
#define CUSTOMCELLATTRIBUTESTEPPABLEPATA_H

#include <vector>
#include "CustomCellAttributeSteppableDLLSpecifier.h"

namespace CompuCell3D {

 class CUSTOMCELLATTRIBUTESTEPPABLE_EXPORT CustomCellAttributeSteppableData{

 public:

 CustomCellAttributeSteppableData(){};
 ~CustomCellAttributeSteppableData(){};

 std::vector<float> array;

 int x;

 };

};

#endif

If we look into CustomCellAttributeSteppable init function (this function is called during steppable
initialization) we can see a line potts->getCellFactoryGroupPtr()->registerClass(&customCellAttributeSteppableDataAccessor);
This line is responsible for telling cell factory object that each new cell should have an object of type
CustomCellAttributeSteppableData attached.

void CustomCellAttributeSteppable::init(Simulator *simulator, CC3DXMLElement *_xmlData) {

 xmlData=_xmlData;

 potts = simulator->getPotts();

 cellInventoryPtr=& potts->getCellInventory();

 sim=simulator;

 cellFieldG = (WatchableField3D<CellG *> *)potts->getCellFieldG();

 fieldDim=cellFieldG->getDim();

 ExtraMembersGroupAccessorBase *accessorPtr = &customCellAttributeSteppableDataAccessor;
 potts->getCellFactoryGroupPtr()->registerClass(accessorPtr);

 simulator->registerSteerableObject(this);

 update(_xmlData,true);

}

How do we know that CustomCellAttributeSteppableData is the class whose objects will get attached to
each cell? We look into steppable header file and see the following line:
``ExtraMembersGroupAccessor<CustomCellAttributeSteppableData> customCellAttributeSteppableDataAccessor; ``.

This line creates special accessor object that given a pointer to a cell it will fetch attached object of
type CustomCellAttributeSteppableData. The exact details of how this is done are beyond the scope of this
manual but if you follow the pattern you will be able to attach arbitrary C++ objects to cc3d cells.
The pattern is as follows:

1. Add ExtraMembersGroupAccessor member to your module - steppable or a plugin - ExtraMembersGroupAccessor<ClassYouWantToAttach>.
In our case we add ``ExtraMembersGroupAccessor<CustomCellAttributeSteppableData> customCellAttributeSteppableDataAccessor; ``.

2. Add a function that accesses a pointer to this ExtraMembersGroupAccessor member - in our case we add (see code below)
ExtraMembersGroupAccessor<CustomCellAttributeSteppableData> * getCustomCellAttributeSteppableDataAccessorPtr(){return & customCellAttributeSteppableDataAccessor;}

3. Register ExtraMembersGroupAccessor object with cell factory (we do it in the init function) of the steppable or plugin -
see full init function above:

potts->getCellFactoryGroupPtr()->registerClass(&customCellAttributeSteppableDataAccessor);

#ifndef CUSTOMCELLATTRIBUTESTEPPABLESTEPPABLE_H
#define CUSTOMCELLATTRIBUTESTEPPABLESTEPPABLE_H
#include <CompuCell3D/CC3D.h>
#include "CustomCellAttributeSteppableData.h"
#include "CustomCellAttributeSteppableDLLSpecifier.h"

namespace CompuCell3D {

 template <class T> class Field3D;
 template <class T> class WatchableField3D;

 class Potts3D;
 class Automaton;
 class BoundaryStrategy;
 class CellInventory;
 class CellG;

 class CUSTOMCELLATTRIBUTESTEPPABLE_EXPORT CustomCellAttributeSteppable : public Steppable {

 ExtraMembersGroupAccessor<CustomCellAttributeSteppableData> customCellAttributeSteppableDataAccessor;

 WatchableField3D<CellG *> *cellFieldG;

 Simulator * sim;

 Potts3D *potts;

 CC3DXMLElement *xmlData;

 Automaton *automaton;

 BoundaryStrategy *boundaryStrategy;

 CellInventory * cellInventoryPtr;

 Dim3D fieldDim;

 public:

 CustomCellAttributeSteppable ();

 virtual ~CustomCellAttributeSteppable ();

 // SimObject interface

 virtual void init(Simulator *simulator, CC3DXMLElement *_xmlData=0);

 virtual void extraInit(Simulator *simulator);

 ExtraMembersGroupAccessor<CustomCellAttributeSteppableData> * getCustomCellAttributeSteppableDataAccessorPtr(){return & customCellAttributeSteppableDataAccessor;}

 //steppable interface

 virtual void start();

 virtual void step(const unsigned int currentStep);

 virtual void finish() {}

 //SteerableObject interface

 virtual void update(CC3DXMLElement *_xmlData, bool _fullInitFlag=false);

 virtual std::string steerableName();

 virtual std::string toString();

 };

};

#endif

Now that we know basic rules of adding custom attributes to cells. Let’s write a little bit of code that makes use
use of this functionality. First we will cleanup function that parses XML (we do not need any XML parsing in our)
example and then we will modify step function to store a product of cell id and current MCS in the variable
x CustomCellAttributeSteppableData object (remember objects of this class will be attached to cell). We
will also store x-coordinates of 5 last center of mass positions of each cell.

Here is implementation of the update function where we remove XML parsing code since we are not doing
any XML parsing in this particular case:

void CustomCellAttributeSteppable::update(CC3DXMLElement *_xmlData, bool _fullInitFlag) {

 //PARSE XML IN THIS FUNCTION

 //For more information on XML parser function please see CC3D code or lookup XML utils API

 automaton = potts->getAutomaton();

 ASSERT_OR_THROW("CELL TYPE PLUGIN WAS NOT PROPERLY INITIALIZED YET. MAKE SURE THIS IS THE FIRST PLUGIN THAT YOU SET", automaton)

 //boundaryStrategy has information about pixel neighbors
 boundaryStrategy = BoundaryStrategy::getInstance();

}

The implementation of step function is a bit more involved but not by much:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	void CustomCellAttributeSteppable::step(const unsigned int currentStep) {

 CellInventory::cellInventoryIterator cInvItr;

 CellG * cell = 0;

 for (cInvItr = cellInventoryPtr->cellInventoryBegin(); cInvItr != cellInventoryPtr->cellInventoryEnd(); ++cInvItr)

 {

 cell = cellInventoryPtr->getCell(cInvItr);

 CustomCellAttributeSteppableData * customCellAttrData = customCellAttributeSteppableDataAccessor.get(cell->extraAttribPtr);

 //storing cell id multiplied by currentStep in "x" member of the CustomCellAttributeSteppableData
 customCellAttrData->x = cell->id * currentStep;

 // storing last 5 xCOM positions in the "array" vector (part of CustomCellAttributeSteppableData)
 std::vector<float> & vec = customCellAttrData->array;
 if (vec.size() < 5) {
 vec.push_back(cell->xCOM);
 }
 else
 {
 for (int i = 0; i < 4; ++i) {
 vec[i] = vec[i + 1];
 }
 vec[vec.size() - 1] = cell->xCOM;
 }

 }

 //printouts
 for (cInvItr = cellInventoryPtr->cellInventoryBegin(); cInvItr != cellInventoryPtr->cellInventoryEnd(); ++cInvItr) {
 cell = cellInventoryPtr->getCell(cInvItr);
 CustomCellAttributeSteppableData * customCellAttrData = customCellAttributeSteppableDataAccessor.get(cell->extraAttribPtr);

 cerr << "cell->id=" << cell->id << " mcs = " << currentStep << " attached x variable = " << customCellAttrData->x << endl;

 cerr << "----------- up to last 5 xCOM positions ----- for cell->id " << cell->id << endl;
 for (int i = 0; i < customCellAttrData->array.size(); ++i) {
 cerr << "x_com_pos[" << i << "]=" << customCellAttrData->array[i] << endl;
 }
 }

}

Lines 7-11 should be familiar. We iterate over all cells in the simulation and fetch a cell pointer from
inventory and store it in local variable cell.

In line 13 we make use of out accessor object. Here we are actually fetching object of type
CustomCellAttributeSteppableData that is attached to each cell. Note that
customCellAttributeSteppableDataAccessor.get function takes as an input special pointer that is a member of
every cell object cell->extraAttribPtr and returns a pointer to the object that accessor is associated with
in our case it returns a pointer to CustomCellAttributeSteppableData.

In line 16 we assign x variable of the object of class CustomCellAttributeSteppableData to be a product
of current cell id and current MCS.

In lines 21-33 we append current xCOM position of current cell to the vector array. We only keep
last 5 positions and therefore in the else portion lines 25-31 we last 4 positions of the vector to the
“front” of the vector and write xCOM in the last position of the vector - line 30. Note that the else part
gets executed only if we determine that vector has already 5 elements. As you can see our attached attribute can store
variable number of elements - because we append to vector. In general we can have vectors, lists, maps, queues
of arbitrary objects. In fact instead of using std::vector it would be better to use queue because queue container
makes it much easier to remove and add elements to and from the beginning and end of the container.

Warning

One thing to remember that computer has a finite memory and it you keep appending you may actually exhaust all operating system memory.

 Debugging CC3D using GDB

Debugging CC3D using GDB

Sometimes when you execute simulation and encounter software crash it is useful to do a quick
introspection to see what went wrong. IN this section we will show you how to inspect CC3D call trace
using GDB.

Note

Provided recipe works only on OSX and Linux

 Index

Index

 Potts3D

Potts3D

Potts3D module (Potts3D/Potts3D.cpp, Potts3D/Potts3D.h) implements entire logic of the Potts algorithm. Moreover,
this module is responsible for creating cell lattice and Potts3D class has methods that facilitate creation and
destruction of cells. It is worth pointing out that creation and destruction of cells is not limited to calling
new or delete operators but it also involves several steps necessary to ensure that cells created have all the
attributes needed by requested by the user plugins. In CC3D cells’ attributes are added dynamically
and CC3D cells by default have only a small subset of attributes hard-coded. This is a design decision that has this nice
consequence that when developing new plugin one does not have to modify CellG class but rather program the addition
of cell’s attributes entirely in the plugins code. We will cover this in detail in later section.

Let’s examine the content of the Potts3D class (Note: we removed some of the code and are presenting only
code snippets most relevant to current discussion. You are encouraged to look at the original code though as you go over
the material presented here):

class Potts3D :public SteerableObject {
 WatchableField3D<CellG *> *cellFieldG;
 AttributeAdder * attrAdder;
 EnergyFunctionCalculator * energyCalculator;

 BasicClassGroupFactory cellFactoryGroup; //creates aggregate of objects associated with cell

 /// An array of energy functions to be evaluated to determine energy costs.
 std::vector<EnergyFunction *> energyFunctions;
 EnergyFunction * connectivityConstraint;

 std::map<std::string, EnergyFunction *> nameToEnergyFuctionMap;

...

 std::vector<BasicRandomNumberGeneratorNonStatic> randNSVec;

 /// An array of potts steppers. These are called after each potts step.
 std::vector<Stepper *> steppers;

 std::vector<FixedStepper *> fixedSteppers;
 /// The automaton to use. Assuming one automaton per simulation.
 Automaton* automaton;

...

 FluctuationAmplitudeFunction * fluctAmplFcn;

 /// The current total energy of the system.
 double energy;

 std::string boundary_x; // boundary condition for x axiz
 std::string boundary_y; // boundary condition for y axis
 std::string boundary_z; // boundary condition for z axis

 /// This object keeps track of all cells available in the simulations. It allows for simple iteration over all the cells
 /// It becomes useful whenever one has to visit all the cells. Without inventory one would need to go pixel-by-pixel - very inefficient
 CellInventory cellInventory;

 Point3D flipNeighbor;
 std::vector<Point3D> flipNeighborVec; //for parallel access

 double depth;
 //int maxNeighborOrder;
 std::vector<Point3D> neighbors;
 std::vector<unsigned char> frozenTypeVec;///lists types which will remain frozen throughout the simulation
 unsigned int sizeFrozenTypeVec;

 ParallelUtilsOpenMP *pUtils;

public:

 Potts3D();
 Potts3D(const Dim3D dim);
 virtual ~Potts3D();

 void createCellField(const Dim3D dim);
 void resizeCellField(const Dim3D dim, Dim3D shiftVec = Dim3D());

 double getTemperature() const { return temperature; }

 void registerConnectivityConstraint(EnergyFunction * _connectivityConstraint);
 EnergyFunction * getConnectivityConstraint();

 bool checkIfFrozen(unsigned char _type);

...

 void initializeCellTypeMotility(std::vector<CellTypeMotilityData> & _cellTypeMotilityVector);
 void setCellTypeMotilityVec(std::vector<float> & _cellTypeMotilityVec);
 const std::vector<float> & getCellTypeMotilityVec() const { return cellTypeMotilityVec; }

 void setDebugOutputFrequency(unsigned int _freq) { debugOutputFrequency = _freq; }
 void setSimulator(Simulator *_sim) { sim = _sim; }

...

 Point3D getFlipNeighbor();

...

 virtual void createEnergyFunction(std::string _energyFunctionType);
 EnergyFunctionCalculator * getEnergyFunctionCalculator() { return energyCalculator; }

 CellInventory &getCellInventory() { return cellInventory; }

 void clean_cell_field(bool reset_cell_inventory = true);

 virtual void registerAttributeAdder(AttributeAdder * _attrAdder);
 virtual void registerEnergyFunction(EnergyFunction *function);
 virtual void registerEnergyFunctionWithName(EnergyFunction *_function, std::string _functionName);
 virtual void unregisterEnergyFunction(std::string _functionName);

 /// Add the automaton.
 virtual void registerAutomaton(Automaton* autom);

 /// Return the automaton for this simulation.
 virtual Automaton* getAutomaton();
 void setParallelUtils(ParallelUtilsOpenMP *_pUtils) { pUtils = _pUtils; }

 virtual void setFluctuationAmplitudeFunctionByName(std::string _fluctuationAmplitudeFunctionName);
 /// Add a cell field update watcher.

 /// registration of the BCG watcher
 virtual void registerCellGChangeWatcher(CellGChangeWatcher *_watcher);

 /// Register accessor to a class with a cellGroupFactory. Accessor will access a class which is a mamber of a BasicClassGroup
 virtual void registerClassAccessor(BasicClassAccessorBase *_accessor);

 /// Add a potts stepper to be called after each potts step.
 virtual void registerStepper(Stepper *stepper);
 virtual void registerFixedStepper(FixedStepper *fixedStepper, bool _front = false);
 virtual void unregisterFixedStepper(FixedStepper *fixedStepper);

 double getEnergy();

 virtual CellG *createCellG(const Point3D pt, long _clusterId = -1);
 virtual CellG *createCellGSpecifiedIds(const Point3D pt, long _cellId, long _clusterId = -1);
 virtual CellG *createCell(long _clusterId = -1);
 virtual CellG *createCellSpecifiedIds(long _cellId, long _clusterId = -1);

 virtual void destroyCellG(CellG * cell, bool _removeFromInventory = true);

 BasicClassGroupFactory * getCellFactoryGroupPtr() { return &cellFactoryGroup; };

 virtual unsigned int getNumCells() { return cellInventory.getCellInventorySize(); }

 virtual double changeEnergy(Point3D pt, const CellG *newCell,const CellG *oldCell);

 virtual unsigned int metropolis(const unsigned int steps,const double temp);

 typedef unsigned int (Potts3D::*metropolisFcnPtr_t)(const unsigned int, const double);

 metropolisFcnPtr_t metropolisFcnPtr;

 unsigned int metropolisList(const unsigned int steps, const double temp);

 unsigned int metropolisFast(const unsigned int steps, const double temp);
 unsigned int metropolisBoundaryWalker(const unsigned int steps, const double temp);
 void setMetropolisAlgorithm(std::string _algName);

 virtual Field3D<CellG *> *getCellFieldG() { return (Field3D<CellG *> *)cellFieldG; }
 virtual Field3DImpl<CellG *> *getCellFieldGImpl() { return (Field3DImpl<CellG *> *)cellFieldG; }

 //SteerableObject interface
 virtual void update(CC3DXMLElement *_xmlData, bool _fullInitFlag = false);
 virtual std::string steerableName();
 virtual void runSteppers();
 long getRecentlyCreatedClusterId() { return recentlyCreatedClusterId; }
 long getRecentlyCreatedCellId() { return recentlyCreatedCellId; }

};

Starting from the top of the file we notice that cell lattice (WatchableField3D<CellG *> *cellFieldG;) is owned
by Potts3D and created by (void createCellField(const Dim3D dim);,
void resizeCellField(const Dim3D dim, Dim3D shiftVec = Dim3D());) .

The cell lattice is an instance of the WatchableField3D class (which strictly speaking is a template class).
The cell lattice stores pointers to cell objects (type CellG*).
This means that when a single cell single occupies several lattice sites we create one CellG object but store
pointer to this object in all locations of cellFieldG that are assigned to this particular instance of CellG object.
This way CellG objects do not get repeated for every pixel (this would cost too much memory)
but rather are referenced from the cell lattice via pointers.
The reason cell lattice field is called “Watchable” is because this class implements the observer design pattern.
This means that any manipulation of the cell lattice (e.g. assigning cell to a given pixel) triggers calls to multiple registered
observer objects that react to such change. For example, if I am extending a cell by assigning its pointer to the new lattice site
one of the observer that will be called (we also refer to them as lattice monitors) is a module that tracks cell volume
The cell that gains new pixel will get its volume attribute increased by 1 and the cell that loses one pixel will
get its volume decreased by 1. Similarly we could have another observer that updates center of mass coordinates, or one that monitors
inertia tensor. The nice thing about using WatchableField3D template is that all those observers are called automatically
when change in the lattice takes place. Observers are called in teh order in which they were registered. Note, this may
or may not be the order in which they were declared in the CC3DCML. CC3D sometimes requires certain lattice monitors
to be loaded and registered before others and this happens automatically in the CC3D code.
Let’s look at how WatchableField3D works in practice:

WatchableField3D

#ifndef WATCHABLEFIELD3D_H
#define WATCHABLEFIELD3D_H

#include <vector>

#include "Field3DImpl.h"
#include "Field3DChangeWatcher.h"

#include <CompuCell3D/CC3DExceptions.h>

namespace CompuCell3D {

 template<class T>
 class Field3DImpl;

 template<class T>
 class WatchableField3D : public Field3DImpl<T> {
 std::vector<Field3DChangeWatcher<T> *> changeWatchers;

 public:
 /**
 * @param dim The field dimensions
 * @param initialValue The initial value of all data elements in the field.
 */
 WatchableField3D(const Dim3D dim, const T &initialValue) :
 Field3DImpl<T>(dim, initialValue) {}

 virtual ~WatchableField3D() {}

 virtual void addChangeWatcher(Field3DChangeWatcher<T> *watcher) {
 if (!watcher) throw CC3DException("addChangeWatcher() watcher cannot be NULL!");
 changeWatchers.push_back(watcher);
 }

 virtual void set(const Point3D &pt, const T value) {
 T oldValue = Field3DImpl<T>::get(pt);
 Field3DImpl<T>::set(pt, value);

 for (unsigned int i = 0; i < changeWatchers.size(); i++)
 changeWatchers[i]->field3DChange(pt, value, oldValue);
 }

 virtual void set(const Point3D &pt, const Point3D &addPt, const T value) {
 T oldValue = Field3DImpl<T>::get(pt);
 Field3DImpl<T>::set(pt, value);

 for (unsigned int i = 0; i < changeWatchers.size(); i++) {
 changeWatchers[i]->field3DChange(pt, value, oldValue);
 changeWatchers[i]->field3DChange(pt, addPt, value, oldValue);
 }
 }
 };
};
#endif

The WatchableField3D<T> template class inherits from Field3DImpl<T> template. The actual memory allocation takes
place in the Field3DImpl<T> but we will not worry about it here. It is sufficient to mention that Field3DImpl<T>
is tha class that manages cell lattice memory. The important thing is to understand how this automatic calling
of lattice monitors is implemented. The WatchableField3D<T> class has a container
std::vector<Field3DChangeWatcher<T> *> changeWatchers; that stores pointers to lattice monitors. The lattice monitor object
is a class that inherits Field3DChangeWatcher<T> class. In CC3D case T is set to CellG*. The BasicArray
is a thin wrapper around std::vector class and it is one of the legacies of the early CC3D implementations. So
WatchableField3D<T> class has a collection of objects that react to the changes in the cell lattice. How do they react?
If we look at the implementation of virtual void set(const Point3D &pt, const T value) function that modifies the lattice
we can see that this function fetches old value stored in the lattice at location indicated by Point3D pt - in the case of
cell lattice this will be pointers currently stored at this location. It then assigns new value to the field (new CellG pointer)
and then it calls all registered lattice monitors:

for (unsigned int i = 0; i < changeWatchers.getSize(); i++)
 changeWatchers[i]->field3DChange(pt, value, oldValue);

In particular each lattice monitor (here referred to as changeWatcher) must define function called field3DChange
that takes 3 arguments - location of the change pt, new value we assign to the field (e.g. new pointer to CellG object)
and old value that was stored in the field before the assignment (e.g. pointer to the cell whose pixel gets overwritten).

This way the process of updating attributes of CellG object can be handled by appropriate changeWatchers. We will
cover in detail examples of change watchers and things will become clearer then.

Energy Functions

Few lines below declaration of cellField, which as we know is an instance of WatchableField3D<CellG *>
we find the declaration of containers associated with Energy function calculations. At this point we remind that the essence
of Cellular Potts Model is in calculating change of energy of the system due to randomly chosen lattice perturbation
(change of the single pixel). Pointers to energy functions objects are stored inside Potts3D object as follows:

/// An array of energy functions to be evaluated to determine energy costs.
std::vector<EnergyFunction *> energyFunctions;
EnergyFunction * connectivityConstraint;

std::map<std::string, EnergyFunction *> nameToEnergyFuctionMap;

All energy functions are actually objects and they all inherit base class EnergyFunction. EnergyFunction is defined
inside Potts3D/EnergyFunction.h header file:

class EnergyFunction {

public:
 EnergyFunction() {}
 virtual ~EnergyFunction() {}

 virtual double localEnergy(const Point3D &pt){return 0.0;};

 virtual double changeEnergy(const Point3D &pt, const CellG *newCell,const CellG *oldCell)
 {
 if(1!=1);return 0.0;
 }
 virtual std::string toString()
 {
 return std::string("EnergyFunction");
 }
};

Each class that is responsible for calculating a change in the overall system energy due to a proposed pixel copy has to
inherit EnergyFunction. The key function that has to be reimplemented in the derived class is
virtual double changeEnergy(const Point3D &pt, const CellG *newCell,const CellG *oldCell). After Metropolis algorithm
function picks candidate for pixel overwrite it will then call changeEnergy for every element of the energyFunctions vector
defined in class Potts3D (see above). The pt argument is a reference to a location of a pixel
(specified as simple object Point3D) that would be overwritten as result of the pixel copy attempt. The newCell
is pointer to a cell object that will occupy pt location of the cellField (if we accept pixel copy) and the
oldCell is a pointer to a cell that currently occupies lattice location pt.

In CompuCell3D users declare which energy functions they want to use in their simulation so that the number of
energy function in the energyFunctions vector will vary depending on what users specify in the CC3DML or in Python.

Later we will present detailed information on how to implement energy function plugins.

When we peek at the metropolisFast function of the Potts3D class we can see that the change of energy is calculated
in a fairly straightforward way:

Point3D pt;

// Pick a random point
pt.x = rand->getInteger(sectionDims.first.x, sectionDims.second.x - 1);
pt.y = rand->getInteger(sectionDims.first.y, sectionDims.second.y - 1);
pt.z = rand->getInteger(sectionDims.first.z, sectionDims.second.z - 1);

CellG *cell = cellFieldG->getQuick(pt);

if (sizeFrozenTypeVec && cell) {///must also make sure that cell ptr is different 0; Will never freeze medium
 if (checkIfFrozen(cell->type))
 continue;
}

unsigned int directIdx = rand->getInteger(0, maxNeighborIndex);

Neighbor n = boundaryStrategy->getNeighborDirect(pt, directIdx);

if (!n.distance) {
 //if distance is 0 then the neighbor returned is invalid
 continue;
}
Point3D changePixel = n.pt;

//check if changePixel refers to different cell.
CellG* changePixelCell = cellFieldG->getQuick(changePixel);

if (changePixelCell == cell) {
 //skip the rest of the loop if change pixel points to the same cell as pt
 continue;
}

if (sizeFrozenTypeVec && changePixelCell) {///must also make sure that cell ptr is different 0; Will never freeze medium
 if (checkIfFrozen(changePixelCell->type))
 continue;
}

++attemptedECVec[currentWorkNodeNumber];

flipNeighborVec[currentWorkNodeNumber] = pt;

/// change takes place at change pixel and pt is a neighbor of changePixel
// Calculate change in energy

double change = energyCalculator->changeEnergy(changePixel, cell, changePixelCell, i);

We first pick a random lattice location pt and retrieve pointer of a cell that occupies this location:

CellG *cell = cellFieldG->getQuick(pt);

We next make sure that the cell can move i.e. it is not frozen:

if (sizeFrozenTypeVec && cell) {///must also make sure that cell ptr is different 0; Will never freeze medium
 if (checkIfFrozen(cell->type))
 continue;
}

Next we pick a random pixel out of set of neighbors of pixel pt:

We use BoundaryStrategy object pointed by boundaryStrategy to carry out all operations related to pixel neighbor
operations. we will cover it later. For now it is important to remember that tracking and operating on pixel neighbors is
usually done via BoundaryStrategy and this helps greatly when we have to deal with periodic boundary conditions
pixels residing close to the edge of teh lattice or classifying neighbor order of pixels.
In this example we use boundary strategy to pick a neighbor changePixel of the pt and verify that this neighbor is a
legitimate neighbor - if (!n.distance). We next fetch cell that occupies changePixel:

CellG* changePixelCell = cellFieldG->getQuick(changePixel);

and verify that changePixelCell is different than cell at the location pt. We do this because overwriting pixel
with the same cell pointer does not change lattice configuration at all. After also confirming that the changePixelCell
is not frozen we compute change of energy if pixel `changePixel currently occupied by changePixelCell
were to be overwritten by cell currently residing at location pt. Or using double changeEnergy(const Point3D &pt, const CellG *newCell,const CellG *oldCell)
terminology we can say that pt <-> changePixel, newCell <-> cell and oldCell <-> changePixelCell where
we used <-> symbol to illustrate how changeEnergy function arguments will be assigned in the call.

Interestingly, we call changeEnergy method of the object called energyCalculator:

double change = energyCalculator->changeEnergy(changePixel, cell, changePixelCell, i);

There is no magic here. If we look inside this function (Potts3D/EnergyFunctionCalculator.cpp) we see
familiar summation over all values returned by changeEnergy of each EnergyFunction object:

double EnergyFunctionCalculator::changeEnergy(Point3D &pt, const CellG *newCell,const CellG *oldCell,const unsigned int _flipAttempt){

 double change = 0;
 for (unsigned int i = 0; i < energyFunctions.size(); i++){
 change += energyFunctions[i]->changeEnergy(pt, newCell, oldCell);
 }
 return change;
}

The reason we use EnergyFunctionCalculator object instead of implementing summation loop inside metropolisFast function
is to handle additional tasks that might be associated with calculating energies - for example collecting information
on every energy term associated with every pixel copy attempts. In this case we would use not EnergyFunctionCalculator but
a more sophisticated version of this class called EnergyFunctionCalculatorStatistics

Steppers

A vector of Stepper objects - std::vector<Stepper *> steppers; is also a part of Potts3D object.
Stepper objects all inherit from Stepper class defined in Potts3D/Stepper.h header file:

class Stepper {
public:
 virtual void step() = 0;
};

This is a very simple base class that defines only one function called step. More important is the question
where and why we need this function. Steppers are called at the very end of the pixel copy attempt i.e. after
all energy function calculation and if pixel copy was accepted after modifying cellField. Steppers are called
always regardless whether pixel copy was accepted or not. A canonical example of the Stepper object is VolumeTracker
declared and defined in plugins/VolumeTracker/VolumeTrackerPlugin.h and
plugins/VolumeTracker/VolumeTrackerPlugin.cpp. VolumeTracker plugin tracks volume of each cell and ensures that
cells’ volume information is correct. It also removes dead cells i./e. those cells whose volume reached 0. In a sense it
performs cleanup actions. However cleanup needs to be done as a very last action associated with pixel copy attempt.
It would be a bad idea to do it earlier because we could remove cell object that might still be needed by other actions
related to e.g. updating cellField.

Cell Inventory

cellInventory as its name suggest is an object that serves as a container for pointers to cell objects but it also
allows fast lookups of particular cells. This is one of he most frequently accessed objects from Python
(although we do it somewhat indirectly). Many of the Python modules you write for CC3D include the following loop:

for cell in self.cell_list:
 ...

What we are doing here is we iterate over every cell in the simulation. Internally the self.cell_list Python object
accesses cellInventory. when we create a cell using Potts3D’s method createCellG we first construct cell object
and then insert it into cell inventory. Similarly when we delete cell object using destroyCellG (method of Potts3D)
we first remove the cell object from inventory and then carryout its destruction
(which, as you know, is not just simple call to the C++ delete operator). It is worth knowing that in addition to
cell inventories e track cell clusters and even links between cells (FocalPointPlasticityPlugin) via various
“inventory” objects.

Acceptance Function and Fluctuation Amplitude Function

A key component of the Cellular Potts Model simulation is the so called acceptance function. It is the function
that is responsible for they dynamic behavior of the simulation. It takes as an input a change in energy due to
proposed pixel copy and outputs a probability with which this proposed pixel copy attempt will be accepted

Canonical formulation of the Cellular Potts Model acceptance function is as follows:

 \begin{cases}
 & P = e^{-(\Delta E-\delta)/kT} \text{ if } \Delta E > 0 \\
 & 1 \text{ if } \Delta E > 0 \\
 & 1/2 \text{ if } \Delta E = 0
 \end{cases}
where \(\Delta E\) is a change in the energy due to proposed pixel copy attempt \(T\) is the the “temperature” which is
a measure of cell membrane fluctuation amplitude and \(k\) is a constant which by default is set to 1 and
\(\delta\) is an energy offset by default set to 0

The higher the T is the higher the chance of accepting pixel copy attempts that result in higher energy
Those appear to be the “wrong” kind of attempts but it turns out that they often save the simulation from being stuck
in a local minimum so ensuring some of them are accepted is essential.

The “temperature” or membrane fluctuation amplitude parameter can be set globally and many of the simulations
using this convention. However, you can imagine that certain cells may have different membrane fluctuation amplitudes
(different “temperatures”). To account for this fact and the fact that the two cells involved in pixel copy attempt
may have different “temperatures” we use objects that derive from FluctuationAmplitudeFunction and whose goal is
to compute effective “temperature” parameter associated with pixel copy based on the two “temperature” parameters that come
from two cells involved in pixel copy. There are many possibilities here but the default strategy is to choose minimum
of the two “temperatures”. The details can be found in Potts3D/StandardFluctuationAmplitudeFunctions.h and
Potts3D/StandardFluctuationAmplitudeFunctions.cpp. We can also create new fluctuation amplitude functions
depending on our needs.

 Simulator

Simulator

Simulator is the key C++ module that sits at the root of each simulation run by CC3D. This is essentially a single class
Simulator and it is responsible for orchestrating the flow of each CC3D simulation. Simulator object creates and
manages other key objects such as Potts3D and ensures the integrity of the entire simulation.
The code for the object is stored in CompuCell3D\Simulator.h and CompuCell3D\Simulator.cpp

Let us look at the header file of the Simulator to examine the responsibilities that Simulator when running CC3D
simulations

namespace CompuCell3D {
 class ClassRegistry;
 class BoundaryStrategy;

 template <typename Y> class Field3DImpl;
 class Serializer;
 class PottsParseData;
 class ParallelUtilsOpenMP;

 class COMPUCELLLIB_EXPORT Simulator : public Steppable {

 ClassRegistry *classRegistry;

 Potts3D potts;

 int currstep;

 bool simulatorIsStepping;
 bool readPottsSectionFromXML;
 std::map<std::string,Field3D<float>*> concentrationFieldNameMap;
 //map of steerable objects
 std::map<std::string,SteerableObject *> steerableObjectMap;

 std::vector<Serializer*> serializerVec;
 std::string recentErrorMessage;
 bool newPlayerFlag;

 std::streambuf * cerrStreamBufOrig;
 std::streambuf * coutStreamBufOrig;
 CustomStreamBufferBase * qStreambufPtr;

 std::string basePath;
 bool restartEnabled;

 public:

 ParserStorage ps;
 PottsParseData * ppdCC3DPtr;
 PottsParseData ppd;
 PottsParseData *ppdPtr;
 ParallelUtilsOpenMP *pUtils;
 ParallelUtilsOpenMP *pUtilsSingle; // stores same information as pUtils but assumes that we use only single CPU - used in modules for which user requests single CPU runs e.g. Potts with large cells

 double simValue;

 void setOutputRedirectionTarget(ptrdiff_t _ptr);
 ptrdiff_t getCerrStreamBufOrig();
 void restoreCerrStreamBufOrig(ptrdiff_t _ptr);

 void setRestartEnabled(bool _restartEnabled){restartEnabled=_restartEnabled;}
 bool getRestartEnabled(){return restartEnabled;}

 static PluginManager<Plugin> pluginManager;
 static PluginManager<Steppable> steppableManager;
 static BasicPluginManager<PluginBase> pluginBaseManager;
 Simulator();
 virtual ~Simulator();
 // PluginManager::plugins_t & getPluginMap(){return pluginManager.getPluginMap();}

 //Error handling functions
 std::string getRecentErrorMessage(){return recentErrorMessage;}
 void setNewPlayerFlag(bool _flag){newPlayerFlag=_flag;}
 bool getNewPlayerFlag(){return newPlayerFlag;}

 std::string getBasePath(){return basePath;}
 void setBasePath(std::string _bp){basePath=_bp;}

 ParallelUtilsOpenMP * getParallelUtils(){return pUtils;}
 ParallelUtilsOpenMP * getParallelUtilsSingleThread(){return pUtilsSingle;}

 BoundaryStrategy * getBoundaryStrategy();
 void registerSteerableObject(SteerableObject *);
 void unregisterSteerableObject(const std::string &);
 SteerableObject * getSteerableObject(const std::string & _objectName);

 void setNumSteps(unsigned int _numSteps){ppdCC3DPtr->numSteps=_numSteps;}
 unsigned int getNumSteps() {return ppdCC3DPtr->numSteps;}
 int getStep() {return currstep;}
 void setStep(int currstep) { this->currstep = currstep; }
 bool isStepping(){return simulatorIsStepping;}
 double getFlip2DimRatio(){return ppdCC3DPtr->flip2DimRatio;}
 Potts3D *getPotts() {return &potts;}
 Simulator *getSimulatorPtr(){return this;}
 ClassRegistry *getClassRegistry() {return classRegistry;}

 void registerConcentrationField(std::string _name,Field3D<float>* _fieldPtr);
 std::map<std::string,Field3D<float>*> & getConcentrationFieldNameMap(){
 return concentrationFieldNameMap;
 }
 void postEvent(CC3DEvent & _ev);

 std::vector<std::string> getConcentrationFieldNameVector();
 Field3D<float>* getConcentrationFieldByName(std::string _fieldName);

 void registerSerializer(Serializer * _serializerPtr){serializerVec.push_back(_serializerPtr);}
 virtual void serialize();

 // Begin Steppable interface
 virtual void start();
 virtual void extraInit();///initialize plugins after all steppables have been initialized
 virtual void step(const unsigned int currentStep);
 virtual void finish();
 // End Steppable interface

 //these two functions are necessary to implement proper cleanup after the simulation
 //1. First it cleans cell inventory, deallocating all dynamic attributes - this has to be done before unloading modules
 //2. It unloads dynamic CC3D modules - plugins and steppables
 void cleanAfterSimulation();
 //unloads all the plugins - plugin destructors are called
 void unloadModules();

 void initializePottsCC3D(CC3DXMLElement * _xmlData);
 void processMetadataCC3D(CC3DXMLElement * _xmlData);

 void initializeCC3D();
 void setPottsParseData(PottsParseData * _ppdPtr){ppdPtr=_ppdPtr;}
 CC3DXMLElement * getCC3DModuleData(std::string _moduleType,std::string _moduleName="");
 void updateCC3DModule(CC3DXMLElement *_element);
 void steer();

 };
};

Few things to notice:

	All CompuCell3D classes are defined within CompuCell3D namespace:

namespace CompuCell3D {
 class ClassRegistry;
 ...
 class COMPUCELLLIB_EXPORT Simulator : public Steppable {
 ...
 };
};

2. Most CC3D objects are dynamically loaded. To make sure an object can be dynamically loaded on Windows we need
to include __decl(dllimport) and __decl(dllexport) class decorators as introduced and required by Microsoft
Visual Studio Compilers. Therefore the C++ macro you see above -COMPUCELLLIB_EXPORT contains required decorators
on Windows and is an empty string on all other operating systems. You can find the details of the Microsoft decorators here:

	https://stackoverflow.com/questions/14980649/macro-for-dllexport-dllimport-switch

	Simulator contains Potts3D object :

namespace CompuCell3D {
 class ClassRegistry;
 ...
 class COMPUCELLLIB_EXPORT Simulator : public Steppable {
 ClassRegistry *classRegistry;

 Potts3D potts;
 ...
 };
};

	Simulator has dictionary of every concentration field used in the simulation

std::map<std::string,Field3D<float>*> concentrationFieldNameMap;

Those fields can be accessed by external code (e.g. Plugin or Steppable code) by using the following Simulator methods:

std::vector<std::string> getConcentrationFieldNameVector();
Field3D<float>* getConcentrationFieldByName(std::string _fieldName);

where getConcentrationFieldNameVector() retrieves a vector of names of the fields used in the simulation and
Field3D<float>* getConcentrationFieldByName(std::string _fieldName) returns a pointer to a field

5. Functions/class members related to streams e.g. std::streambuf * cerrStreamBufOrig; are related to redirecting
output to either console or to a GUI. We will not discuss them here

6. Core simulator functionality, as far as the flow of the simulation is concerned, is implemented in the following
functions:

void initializeCC3D();
virtual void start();
virtual void extraInit();///initialize plugins after all steppables have been initialized
virtual void step(const unsigned int currentStep);
virtual void finish();

	void initializeCC3D() initializes Potts3D object based on the CC3DML content , as well as loadable modules such as

Plugins and Steppables and it is the first Simulator function that is called after parsing of the CC3DML is complete

	void extraInit() is typically executed next and it calls extraInit method that is a member of every CompuCel3D

plugin. Think of this function as a way of performing a second round of initialization but in the situation where
all necessary objects (plugins) are instantiated and properly located inside overseeing objects (Simulator / Potts3D)

	void start() function calls start method for all Steppables that were requested by current simulation.

	void step(const unsigned int currentStep) method executes a single Monte Carlo Step (MCS) by calling

metropolis method from Potts3D;

int flips = potts.metropolis(flipAttempts, ppdCC3DPtr->temperature);

and it also calls step method of every steppable requested by the simulation (including PDE solvers) by calling
step method of a classRegistry member of the Simulator object. You may think about classRegistry as
of a container that stores pointers to Steppable objects. Indeed, if we looks a the
CompuCell3D\ClassRegistry.h declarations we notice that ClassRegistry class is a collection of containers with
extra functionality that simplify code calls from parent objects (e.g. from Simulator):

namespace CompuCell3D {
 class Simulator;

 class COMPUCELLLIB_EXPORT ClassRegistry : public Steppable {
 BasicClassRegistry<Steppable> steppableRegistry;

 typedef std::list<Steppable *> ActiveSteppers_t;
 ActiveSteppers_t activeSteppers;

 typedef std::map<std::string, Steppable *> ActiveSteppersMap_t;
 ActiveSteppersMap_t activeSteppersMap;

 Simulator *simulator;

 std::vector<ParseData *> steppableParseDataVector;

 public:
 ClassRegistry(Simulator *simulator);
 virtual ~ClassRegistry() {}

 Steppable *getStepper(std::string id);

 void addStepper(std::string _type, Steppable *_steppable);

 // Begin Steppable interface
 virtual void extraInit(Simulator *simulator);
 virtual void start();
 virtual void step(const unsigned int currentStep);
 virtual void finish();
 // End Steppable interface

 virtual void initModules(Simulator *_sim);
 };
};

	Finally the void finish() method is responsible finishing the simulation. This seemingly simple task involves

few critical steps: running few Monte Carlo Steps (of metropolis algorithm) with zero temperature - users specify
number of those steps in the CC3DML code (in <Anneal> element), calling finish function of every steppable,
unloading dynamically loaded modules (Plugins and Steppables) to ensure that subsequent simulations can run without
restarting CC3D.

There are clearly more methods in the Simulator objects bu the ones described perform most of the work.

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_images/custom_attrs_03.png
2.0625
x_com_pos[3]=72

cell->id=81 mcs = 3 attached x variable = 243

- for cell->id 81

x_com_pos[2;

up to last 5 xCOM positions -

x_com_pos[e;

x_com_pos[1]=;
x_com_pos[2.
x_com_pos[3.
mes= 3
custom_cell_attr_data= <cc3d.cpp.CompuCellExtratiodules. CustomCellAttributeSteppableData; proxy of <Swig Object of type ’CompuCell3D:
custom_cell_attr_data.x= 3

after modification custom_cell attr_data.x= 9

CALLING CLOSE EVENT FROM SIMTAB

EXITING WITH ERROR CODE= @

ustonCellAttributeSteppableData *' at @xG000GLCCAED37330> >

Process finished with exit code @

_images/custom_attrs_04.png
up to last 5 xCOM positions ----- for cell->id 81

x_com_pos[e;

x_com_pos[1

x_com_pos[2.

x_com_pos[3.

mes= 3
custom_cell_attr_data= <cc3d.cpp.CompuCellExtratiodules. CustomCellAttributeSteppableData; proxy of <Swig Object of type ’CompuCell3D:
custom_cell_attr_data.x= 3

CustonCellattributeSteppableData *' at @x00000196312DF090> >

custon_cel]_attr_data.array= <cc3d.cpp.PlayerPython.vectorfloat; proxy of <Swig Object of type 'std
custom_cell_attr_data.array[0]= 100.0
custom_cell_attr_data.array[len(custon_cell_attr_data.array)-1] = 22.934762028198242

CALLING CLOSE EVENT FROM STMTAB

EXTTING WITH ERROR CODE= @

jector< float,std: :allocator< float > > *' at €x000001963120F0F0> >

Process finished with exit code @

_images/custom_attrs_01.png
Generate CC3D C+-

Modue Core Name
Modue Directory.
Code Layout

O Main Code:

C++Modue Type

O Plugn

+ Module

[customCelatirbutesteppable

[0:\cC30_PY3_GIT\CompuCelaD\peveloperZone

© Developer Zone.

Python Wrap.

Attach cell attrbute

_static/up-pressed.png

_images/custom_attrs_02.png
#define CUSTOMCELLATTRIBUTESTEPPABLEPATA H

#include <vector>

&
T [#ifndef CUSTOMCELLATTRIBUTESTEPPABLEPATA H
4
5 | finclude "CustomCellAttributeSteppableDLLSpecificr.h”

namespace CompuCell3D {

E class CUSTOMCELIATTRIBUTESTEPPABLE EXPORT CustomCellAttributeSteppableData{

1 public:
12

13 CustomCellattributeSteppableData () {15
14 ~CustomCellAttributeSteppableData () {};
15

6 std: :vector<float> array;

18 int x;

#endif

_static/up.png

_images/custom_attrs_05.png
custom_cell_attr_data= <cc3d.cpp.CompuCellExtratiodules. CustomCellAttributeSteppableData; proxy of <Swig Object of type 'CompuCell3D::CustomCellAttributeSteppableData *' at @xG00GO26A3SO6F720> >
custom_cell_attr_data.x= @

after modification custom_cell attr_data.x= 0

custon_cell attr_data.array= <cc3d.cpp.PlayerPython.vectorfloat; proxy of <Swig Object of type 'std::vector< float,std
custon_cell_attr_data.array[0]= 23.0

custon_cel]_attr_data.array[len(custom_cell attr_data.array)-1] = 100.0

sinple_map.size(

1locator< float > > *' at @xG000G26A3SA6F750> >

_images/custom_attrs_06.png
mes= 1
custom_cell_attr._data= <cc3d. cpp.CompucellExtratiodules . CustonCel lAttributeSteppableData; proxy of <Swig Object of type "Compucell3D: :CustonCellAttributeSteppableData = at 0x0000026A35D04480> >
custon_cell_attr_data.x= 1

after modification custom cell attr_data.x= 1

custom_cell_attr._data.array= <cc3d.cpp.PlayerPython.vectorfloat; proxy of <Swig Object of type 'std::vector< float,std: :allocator< float > > *' at 6x0000026A35D04540> >
custon_cell_attr_data.array[0]= 22.9375

custon_cel]_attr_data.array[len(custom_cell attr_data.array)-1] = 100.0

simple_map.size()= 1

simple_map[cell.

(20, 30)

_images/debugging_gdb_00.png
m m@ubuntu: ~/CC3D_4.2.0 Q

(base) m@ubuntu:~$ cd CC3D_4.2.0/

(base) m@ubuntu:~/CC3D_4.2.0$./compucell3d.sh
./compucell3d.sh: 10: Bad substitution
CompuCell3D - version 4.2.0

Copyright (C) 2026 Free Software Foundation, Inc.

License GPLV3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying” and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration” for configuration details.

For bug reporting instructions, please see:

<http://waw.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/docunentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word
Reading symbols from /home/m/miniconda3/envs/cc3d_2026/bin/python.

(gdb)

nav.xhtml

 Table of Contents

 		
 CompuCell3D Reference Manual - 4.3.0

_images/debugging_gdb_03.png
m@ubuntu: ~/CC3D_4.2.0 Q = - o ®

otal number of pixel copy attempts=16200

unber of Attempted Energy Calculations=1

tep 20 Flips 0/16200 Energy © Cells 901 Inventory=901
letropolis Fast

otal number of pixel copy attempts=16200

ALLING FINISH

hread 1 "python” received signal SIGSEGV, Segmentation fault.

x00007fffe2b846ca in CompuCell3D: :FieldExtractor::fillCellFieldData3d(long, long) ()
from /home/m/CC3D_4.2.0/1ib/site-packages/cc3d/cpp/lib/libFieldExtractor.so

gdb) where

16 0x00007fffe2b846ca in CompuCell3D: :FieldExtractor::fillCellFieldData3d(long, long) ()
from /home/m/CC3D_4.2.0/1ib/site-packages/cc3d/cpp/lib/libFieldExtractor.so

11 0x00007fffe2bf457c in _wrap_FieldExtractor_fillCellFieldData3d ()
from /home/m/CC3D_4.2.0/1ib/site-packages/cc3d/cpp/_PlayerPython.so

2 0x00005555556bda30 in _PyMethodDef RawFastCallKeywords (
nethod=0x7fffe2cad3a <swigMethods+12672>, seli=0x7fffe2cb0230,
aros=ex7fffds29cafe, nargs=<optimized out>, kunanes=<optimized outs)
at /tmp/build/80754af9/python_1585235023510/work/Objects/call.c:698

3 ©x00005555556bdbd1 in _PyCFunction_FastCallKeywords (func=ex7fffe2cb932e,
args=<optimized out>, nargs=<optimized out>, kwnames=<optimized out>)
at /tmp/build/80754af9/python_1585235623510/work/Objects/call.c:734

4 ©x000055555572457b in call_function (kwnames=6x®, opar:
pp_stack=<synthetic pointer>)
at /tmp/build/80754af9/python_1585235023510/work/Python/ceval.c:4568

5 _PyEval EvalFraneDefault (f=<optimized out>, throwflag=<optimized out>)
3t /tnp/build/80754af9/python 1585235023516 work/Python/ceval.c:3893

6 0x00005555556bd02b in function_code_fastcall (globals=<optimized out>,
nargs=3, args=<optimized out>, co=<optimized out>)
at /tmp/build/80754af9/python_1585235023510/work/Objects/call.c:283

7 _PyFunction_FastCallKeywords (func=<optimized out>, stack=0x7fffdg27ebas,
Nargs=3, kwnanes=<optimized out>)
at /tnp/build/80754af9/python 1585235023510 /work/Objects/call. c:408

-Type <RET> for more, q to quit, c to continue without paging--

18~ 0x00005555557241e9 in call_function (kwnames=6x8, oparg=<optimized outs,
pp_stack=<synthetic pointer>)
at /tmp/build/80754af9/python_1585235023510/work/Python/ceval.c:4616

9 _PyEval EvalFraneDefault (f=<optimized out>, throwflag=<optimized out>)
3t /tnp/build/80754af9/python 1585235023516 work/Python/ceval.c:3893

116 0x00005555556bd02b in function_code_fastcall (globals=<optimized out>,
nargs=1, args=<optinized out>, co=<optimized out>)
at /tmp/build/80754af9/python 1585235023510 /work/Objects/call.c:283

_images/dev_zone_1.png
Generate CC3D Co+ Module [~

Modue Core Name
Modue Directory.
Code Layout

O Main Code:

C++Modue Type

O Plugn

[Growthsteppable|
[p:\cc30_PY3_GITCompucellip Developerzone Bronse..
® Developer Zone
© steppable PythonWrap [] Attach cell attribute

_images/debugging_gdb_01.png
m m@ubuntu: ~/CC3D_4.2.0 [e} - o ®

(base) m@ubuntu:~$ cd CC3D_4.2.0/

(base) m@ubuntu:~/CC3D_4.2.0$./compucell3d.sh

. /compucell3d.sh: 10: Bad substitution

CompuCel13D - version 4.2.0

GNU gdb (Ubuntu 9.1-6ubuntu1) 9.1

Copyright (C) 2620 Free Software Foundation, Inc.

icense GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.htnl>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

rype "show copying” and "show warranty” for details

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration” for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/docunentation/>.

For help, type "help".

Type "apropos word” to search for commands related to "word"...

Reading symbols from /home/m/miniconda3/envs/cc3d_2026/bin/python...

(gdb) run ${PREFIX_CC3D}/lib/site-packages/cc3d/player5/compucell3d.pyw $* --cur
rentDir=${current_directory}|

_images/debugging_gdb_02.png
m m@ubuntu: ~/CC3D_4.2.0
total number of pixel copy attempts=16200

Nunber of Attempted Energy Calculations=2

Step 19 Flips 0/16200 Energy © Cells 901 Inventory=901
Metropolis Fast

total number of pixel copy attempts=16200

Metropolis Fast
total number of pixel copy attempts=16200

Nunber of Attempted Energy Calculations=1

Step 20 Flips 0/16200 Energy © Cells 901 Inventory=901
Metropolis Fast

total number of pixel copy attempts=16200

CALLING FINISH

Thread 1 "python” received signal SIGSEGV, Segmentation fault.
in CompuCell3D: :FieldExtractor::fillCellFieldData3D(long, lon

9) ()
fron

(gdb) []

covid/Coronavirus.cc3d - CompuCell3D Player

File View Simulation Visualization Tools Window Help
Q00 mX7Z &aa B
Model Editor ® Craphiee 0
Property Value
20200118
Version 411
Metadata Metadata
Potts Potts
Plugin celType
Plugin Volume
Plugin CenterofMass
Plugin NeighborTra.
Plugin PixefTracker
» Plugin Contact

+ Blunin Chamntavie

Consc

Step 0 Flips 0/16200 Energy 0 Cells 900 Inventory=at
tropolis Fast
total number of pixel copy attempts=16200

Step 10 Flips 0/16200 Energy 0 Cells 900 Inventory:
tropolis Fast
total number of pixel copy attempts

_images/dev_zone_3a.png
A CMake 3.13.2 - D/CC3D_PY3_GIT_build_developer_zone

Ele Tools Qptions Help

Vhere s the source code: ~[D3/CC30_PY3_GIT/CompuCelD/DeveloperZone

Vhere to buld the binaries: [D:/CC3D_PY3_GIT_buld_developer_zone

Search: [python [Grouped
Neme Value
PYTHON_DEBUG_LIBRARY PYTHON_DEBUG_LIBRARY-NOTFOUND
C/Minicanda3/envs/cc3d 2019/include

PYTHON_INCLUDE_DIR
PYTHON_LIBRARY
PYTHON_LIBRARY_DEBUG.

C:/Miniconda3/envs/cc3d_2019/libs/python36.ib
PYTHON_LIBRARY_DEBUG-NOTFOUND

_images/dev_zone_3b.png
A

Specify the generator for this project

[Visual Studio 142015 Win64

Optonal tookset to use (argument to 7).

@® Use defauit native compilers

O speciy native compiers

O specfy toolchain file for cross-compiing
O specfy options for cross-compiling

_images/dev_zone_2.png
#include <CompuCell3D/CC3D.h>

using namespace CompuCell3D;

using namespace std;

finclude "GrowthSteppable.h"

GrowthSteppable: :GrowthsSteppable ()

cellFieldG(0),sim(0) ,potts (0),xmlData (0) ,boundaryStrategy (0) ,autol

_images/dev_zone_3.png
le Tools Options Help

Where i the source code [D:/CC30_PY3_GIT/CompuCell30/DeveloperZone

Browse Source...

Where to buid the binaries: [D:/CC3D_PY3_GIT_buid_developer_zone.

Browse Buid...

Search:

[crouped [Advanced

4k AddEntry

3 Remove Entry.

Name

BUILD_SHARED_LIBS
CMAKE_CONFIGURATION_TYPES
CMAKE_INSTALL_PREFIX
COMPUCELL3D_A MAJOR_VERSION
COMPUCELL3D_B_MINOR VERSION
COMPUCELL3D_C_BUILD_VERSION
COMPUCELL3D_FULL_SOURCE_PATH
COMPUCELL3D_INSTALL PATH
SWIG_EXECUTABLE

0/Proaram

Value

Debug:Release:MinSizeRelRelWithDebinfo
Di/Program Files/cc3d_py3_demo_new

DY/CCID PY3 GIT/CompuCell3D/core/CompuCell3D
fes/cc3d.py3. demo new.
Cilswig/swig.exe

_images/dev_zone_4.png
o4 Open Project x
« ~ 4 [1> ThisPC > SSD (D) » CC3D_PY3_GIT_build_developer_zone v © | Search CC3D_PY3_GIT build_.. P

Organize v New folder

3 Dropbon A Name Dstemodified Type Size
@ Onediive s 7/20/20195:53PM File folder
] CMikeFiles U220 PM Filefolder
ThisbC] Growthsteppable 220N PM Filefolder
2 3D Objects 1| pyinterface 7/26/20197:11PM File folder
B Desktop. || SimpleVolume T/26/2019711PM File folder
Documents [} VolumeDemo 7/20/20196:02PM File folder
] VolumeMean 2207 PM Filefolder
- Downloacs ot V20295 Fiefolder
b Music 9 ALLBUILD T26/2019711PM VCos Project ke
] Pictures T DeveloperZone TB2019TPM Microsoft Visual . a8
B Videos &l INSTALL U2B/019TN M VCor Project 12k8
Windows?_05 (C)) ZERO_CHECK U2B/019TPM VCor Project ke
- S (@)
— PATRIOT (6)
. paTRIOT) v
File pame:] (Al project Files (-sindswve

Open Cancel

_images/dev_zone_5.png
Q) DeveloperZone - Microsoft Visual Studio
Fle Edt View Project Buld Debug Tem Nsight Tools Architecture Test Anshze Winde

S0 -2 W W BuildSolution 3 | Windows Debugger = Auto
S Rebuild Solution Ctrl+Alt+F7
Solution Explorer G settion
- d
@ o Z 4 RunCodeAnalysison Solution Alt+F11

Search Solution Explorer (Ctrl+)
] Solution ‘DeveloperZone (
b Fl ALLBUILD

) CompuCellExtraboduls

) GrowthSteppableshares Batch Build...

B INSTALL e —

) SimpleVolumeShared

& VolumeMeanShared

] ZERO_CHECK

_images/dev_zone_6.png
Configuration Manager

RelWithDebinfo w64
Debug
MinSizeRel i

Release

GrowthSteppableShared
INSTALL
SimpleVolumeShared
VolumeMeanShared
ZERO_CHECK

RelWithDebinfo
RelWithDebinfo
RelWithDebinfo
RelWithDebinfo
RelWithDebinfo

_images/dz_001.png
DeveloperZone Configuration

ccpomRepestoyor [Giesdsoves

Buid Dir. (compier work drectory) [C:/cc3d_source buid

To configure Developer Zone for compiation please select CC3D GIT and buld drectories and cick “Configure”™

_images/dz_002.png
DeveloperZone Configuration

ccpomRepestoyor [Giesdsoves

Buid Dir. (compier work drectory) [C:/cc3d_source buid

Now open a terminal (deally Visual Studio 2015 shel) and do the folowing:
c\CompuCel\condashel.bat

cd C:\ce3d source buid
rmake
rmake install

(base) [32m]9;5; USERNAME \@]9;8; COMPLTERNAME" | [92mc:\CompuCelD [50m
[50m> [conda.bat actvate

_images/dev_zone_7.png
Q) DeveloperZone - Microsoft Visual Studio
File Edt View Project Buld Debug Team Neight Tooks Architecture Tet Anshze Window Help

G Retwitnt | x64 - b Local Windows Debugger - Auto -
R o
S -5 p- Show output fror= [Buld -
e Seton lers () 5. 5> di\program Files\ce3dpya_demo_newinclude\compucel1ad\conpucel s SteppabLe. n(31 sz dectaration of
: S5 D:\CCaD.PY3_GIT\CompuCe1130\Developerzone\Volunehean Voluneriean.n(43) note: see declaration of -CompuCel1ad
51 Solution DevelopeZone' (7 prject) S50:\Program Files\ccad pya_demo_new\include\ ConpuCeL1aD\PUBILCUTATities NumericalUtils. n(24) s warning G473 'r
S Ciprogran Files (xi)\iindows KiTe\16\Incluge\10.9.10150.0\crE\math.n(521): note: see previous derinition o
5 S50:\Progran Files\ccad_pya demo.new\include) ConpuCeL1aD\COMpUCE115D) ClassRegistry.h(46) warming C4275: non d11-
’ S d:\program Files\cead py3. demo_new\include\ conpucel13d\compucl1ad\Steppabie.h(31): note: see declaration of
S5 D:\Program Files\cead pya demo_new\include) ConpuCeL1aD\ConpuCe112D) ClascRegi<try.n(45): note: see declaration
b EINSTAL Clean S50:\Progran Files\cesd pya, demo.newinclude) CompuCe113D\CoRpUCELLED, ClaseRegiScry . n(47): varning.
b Sy o | S0i\rosran Files\ccad_pya_demo new\include\ConpuCe1130\ConpuCe1130/ ClassRegistry (1) warning
b) Volumel 5> with
b Emoq e i NS TR R —
Prject O , _Ty=Conpuce eppaoie -
ectOnly 5 1
Retarget SOK Version S50:\Program Files\cesd_pya_demo_new\include) ConpuCeL13D\ConpUCE1130) ClassRegistry.n(S5): warning C4251: *Conpucs
. S with
ScopetoThis 2 .
B New Solution Eplorer View > T,
e . s Ty~ Compuce1130: Steppable *
R Showon CodeMap > ;
Buid Dependencies + | S0r\erogran Files\ccad_py3_demo_new\include\ConpuCe1130) ConpuCe1 130/ ClassRegistry . n(50) s warning Cé2s1: ‘Compuce
S with
add S .
T Enemn > _Ty-Conpuce1130: parsepata =
s)
Mansge NuGet Pockages.. 550:\CC3D_PY3_GIT\CompuCe1130\Developer Zone\GrowthSt eppable/ GrowtnSteppable.n(26) warning C4275: non d1l-interss
@ S Sntip P S di\progran Files\ce3d_pya_demo_newinclude\compucel1ad\conpucel s Steppable. h(31 <ee dectarstion of
S5 D:\CCaD.PY3_GIT\CompuCe1130\Deeloper Zone\GrovEhSt eppabie/ GrowtnSteppabie. n(24) “ee declaration of ‘G
Debug » | $50:\CCD_PY2_ GIT\ConpuCe1 13\ DeveLoper Zone\ Growthsteppable) GrowthSteppable.n(40) : varming C4251: *CompuCel1ap: i
. | 5 Di\erosran Fitesicea pya_demo_newtinclude\ConpuCe113D\ Publ <UL Sties, parallelUEi1sOpentP.n (24) note: sz ¢
55D:\CC3D_ AY3_ GIT\ CompuCe1 130\ DeveLoper Zone\GrowEhSteppable/ GrowtnSteppasLe. n(48) : warning (4251: *ConpuCel1ad
% ca o S i
g o

_images/dev_zone_8.png
D DeveloperZone - Microsoft Visual Studio
File Edt View Project Buld Debug Team Neight Tooks Architecture Tet Anshze Window Help
- Ew RelWithl - 64 - Local Windows Debugger ~ Auto BlEE

Output X Error List

@ @ o--am k- Show output from: Build - =

1>------ Build started: Project: INSTALL, Configuration: RelWithDebInfo x64 -
1> -- Install configuration: "RelwithDebInfo"

Search Solution Explorer (Ctrl+;)

] Solution ‘DeveloperZone’ (7 projects) 1> -- Installing: D:/Program Files/cc3d_py3_demo_new/include/Compucell3D/CompuCelL3D/steppables/GrowthSteppable/Groutnsteppable.h

b [ALLBUID 1> -- Installing Files/cc3d_py3_demo_new/include/ CompuCe113D/ ConpuCe113D/ steppables/Growthsteppable/ GrowthSteppableDLLSpeci Fier.h
';‘ raModul 1> Installing: Files/cc3d_py3_demo_new/1lib/site-packages/cc3d/cpp/CompuCell3DSteppables/CC3DGrowthSteppable. 1ib

b [Emrmeen =3 1> Installing: D:/Program Files/cc3d_py3_demo_new/lib/site-packages/cc3d/cpp/CompuCell3DSteppables/CC3DGrowthSteppable.dll

> GrowthSteppableShared 1> -- Installing Files/cc3d_py3_demo_new/include/CompuCe113D/ ConpuCe113D/ plugins/Sinplevolune/ SimplevoluneDL LSpecifier.h

1> - Installing: Files/cc3d_py3_demo_new/ include/CompuCel130/CompuCe1130/plugins/SimpleVolune/SimpleVolumePlugin.h
bl SimpleVolur i Build 1> -~ Installing: D:/Program Files/cc3d_py3_demo_new/lib/site-packages/cc3d/cpp/CompuCell 3DPlugins/CCIDSimpleVolume. 1ib
b i VolumeMes Rebuild 1> - Installing: Files/cc3d_py3_demo_new/1ib/site-packages/ cc3d/cpp/ConpuCel130Plugins/CC3DSimpleVolune. d11
»] zeRo.CHE] 1> - Installing: Files/cc3d_py3_deno_new/include/Compucel13/ConpuCel13D/ steppables/Volunehean/ Volunetiean.h
- Clean 1> - Installing: Files/cc3d_py3_demo_new/ include/CompuCel13D/CompuCe1130/ steppables/Volunetiean/VolunetieanDL LSpeci Fier.h
View | 1> - Installing Files/cc3d_py3_demo_new/1ib/site-packages/cc3d/cpp/ConpuCel130Steppables/CCI0Volunehiean. 1ib
1> - Installing: Files/cc3d_py3_demo_new/1ib/site-packages/cc3d/cpp/ConpuCel130Steppables/CCIDVolunctiean. d11
Analyze [N IS Installing: Files/cc3d_py3_demo_new/1ib/site-packages/cc3d/cpp/_CompuCellExtraModules.pyd
Project Only » | 1> -~ Installing: D:/Program Files/cc3d_py3_demo_new/1ib/site-packages/cc3d/cpp/CompuCellExtratiodules. py
Build: 1 succeeded, © failed, 6 up-to-date, @ skipped =
Retarget SDK Version
Scopeto This

) New Solution Explrer View
R, Show on Code Msp

Build Dependencies 8
Add 3
B* Class Wizard. CtrleShifte X

B Manage NuGet Packages

_images/dz_005.png
Finished generating code
[166%] Built target CompuCellExtratiodules

(base) m@H-LENOVO c:\cc3d_source_build
> nmake install

Microsoft (R) Program Maintenance Utility Version 14.00.23026.8

16%]
33%]
50%]
66%]
83%]
88%]
[160%]

> |

Built
Built
Built
Built
Built
Built
Built

opyright (C) Microsoft Corporation. All rights reserved.

target CustomCellAttributeSteppableshared
target HeterotypicBoundaryLengthshared
target Growthsteppableshared

target SimpleVolumeshared

target VolumeHeanshared

target CompuCellExtratodules_swig_compilation
target CompuCellExtratodules

Install the project..
Install configuration: "ReluithebInfo”
Installing: c:/CompuCell3D/Miniconda3/Lib/site-packages/cc3d/cpp/Compucel13Dsteppables/CC3DCustonCellAttributeSteppable. 1

-~ Installing: c:/CompuCell3D/Miniconda3/Lib/site-packages/cc3d/cpp/Compucel13DSteppables/CC3DCustonCellAttributeSteppable. d

Installing: c:/CompuCell3D/Miniconda3/Lib/site-packages/cc3d/cpp/Compucel13Dsteppables/CC3DHeterotypicBoundaryLength.1ib
Installing: c:/CompuCell3D/Miniconda3/Lib/site-packages/cc3d/cpp/Compucel13Dsteppables/CC3DHeterotypicBoundaryLength.d1l
Installing: c:/CompuCell3D/Miniconda3/Lib/site-packages/cc3d/cpp/Compucel13Dsteppables/CC3DGrowthsteppable.lib
Installing: c:/CompuCell3D/Miniconda3/Lib/site-packages/cc3d/cpp/Compucel13Dsteppables/CC3DGrowthsteppable.dll
Installing: c:/CompuCell3D/Miniconda3/Lib/site-packages/cc3d/cpp/Compucel130Plugins/CC3DSimplevolune. 1ib

Installing: c:/CompuCell3D/Miniconda3/Lib/site-packages/cc3d/cpp/Conpucel130Plugins/CC3DSimplevolume.d11

Installing: c:/CompuCell3D/Miniconda3/Lib/site-packages/cc3d/cpp/Compucell3Dsteppables/CC3DVolunetiean. 1ib

Installing: c:/CompuCell3D/Miniconda3/Lib/site-packages/cc3d/cpp/Compucell3Dsteppables/CC3DVolunetean. d1l

Installing: c:/CompuCell3D/Miniconda3/Lib/site-packages/cc3d/cpp/_CompuCellExtratodules.pyd

Installing: c:/CompuCell3D/Miniconda3/Lib/site-packages/cc3d/cpp/ConpucellExtraodules. py

(base) m@H-LENOVO c:\cc3d_source_build

_images/git_setup.png
1. mc [m@MacBook-Pro]:~/CC3D_developers_manual (bash)

bash-3.2$ mkdir CC3D_DEVELOP

bash-3.2$ git clone https://github.com/CompuCell3D/CompuCell3D.git .
fatal: destination path '.' already exists and is not an empty directory.
bash-3.2$ cd CC3D_DEVELOP/

bash-3.2$ git clone https://github.com/CompuCell3D/CompuCell3D.git .
Cloning into '.'...

remote: Enumerating objects: 309, done.

remote: Counting objects: 100% (309/309) done.

remote: Compressing objects: 100% (213/213), done.

remote: Total 30289 (delta 169), reused 175 (delta 95), pack-reused 29980
Receiving objects: 100% (30289/30289), 61.11 MiB | 561.00 KiB/s, done.
Resolving deltas: 100% (20277/20277), done.

Checking connectivity... done.

Checking out files: 100% (9990/9990), done.

bash-3.2$ I

_images/dz_003.png
(base) m@M-LENOVO C:\Users\m
> cd c:\cc3d_source_build

(base) men-LENOVO c:\cc3d_source_build
. nmake|

_images/dz_004.png
c:\cc3d_source\compucell3d\core\compucell3d\PluginManager.h(168): warning C4251: 'CompuCell3D::PluginManager<CompuCell3D: :Step
pable>::1ibExtension': class 'std::basic_string<char,std: :char_traits<chars,std: :allocator<char>>" needs to have dll-interface
to be used by clients of class 'CompuCell3D: :PluginManager<CompuCell3D: : Steppable>’
c:\cc3d_source\compucell3d\core\compucel13d\field3d\Field3DInpl.h(76): warning C4018: '<': signed/unsigned mismatch ‘
c:\cc3d_source\compucell3d\core\compucel13d\field3d\Field3DInpl.h(58): note: while compiling class template member function 'C
ompuCel13D: : Field3DImpl<floats: :Field3DImpl (const CompuCell3D::Dim3D,const T &)

with

[
| 1
C:\cc3d_source\CompuCell3D\core\CompuCel13D/Field3D/Array3D.h(133): note: see reference to function template instantiation 'C
mpuCe113D: : Field3DImpl<float>: : Field3dImpl(const CompuCell3D::Dim3D,const T &) being compiled

T-float

Float

:\cc3d_source\CompuCe113D\core\CompuCel130/Field3D/Array3D.h(129): note: see reference to class template instantiation *Compul
e113D: :Field3DImpl<float>" being compiled
[160%] Linking CXX shared module _CompuCellextraModules.pyd
ompuCel1ExtraHodulesPYTHON_wrap.cxx.obj : MSIL .netmodule or module compiled with /GL found; restarting link with /LTCG; add
/LTCG to the link command line to improve linker performance
LINK : warning LNK4675: ignoring '/INCREMENTAL' due to '/LTCG' specification
Creating library CompuCellExtratodules.1ib and object CompucellExtraHodules.exp
enerating code
Finished generating code
ompuCel1ExtraHodulesPYTHON_wrap.cxx.obj : MSIL .netmodule or module compiled with /GL found; restarting link with /LTCG; add
/LTCG to the link command line to improve linker performance
LINK : warning LNK4675: ignoring '/INCREMENTAL' due to '/LTCG' specification
Creating library CompuCellExtratodules.1ib and object CompucellExtraHodules.exp
enerating code
Finished generating code
[166%] Built target CompuCellExtratiodules

(base) m@H-LENOVO c:\cc3d_source_build
N

_images/gs_python_output.png
‘total number of pixel copy attempts=10000
Number of Attempted Energy Calculations=910

Step 8 Flips 210/10000 Energy -803.2 Cells 144 Inventory=144
Metropolis Fast

total number of pixel copy attempts=10000

Number of Attempted Energy Calculations=870

Step 9 Flips 236/10000 Energy -1074.4 Cells 144 Inventory=144
Metropolis Fast

total number of pixel copy attempts=10000

Number of Attempted Energy Calculations=859

Step 10 Flips 236/10000 Energy -1244 Cells 144 Inventory=144
CHANGING GROWTH RATE FOR CELL TYEE 1 T0 -1.2

_images/gs_python_simulation.png
100, 100,

80 80
604 604
40, 0,

20,

20,

5% @ @ B o 0 H M & T

_images/gs_cpp.png
106, 100, 100,

80 80 80
60j &0j 60j
40. 0, 40.
20j 204 20j

0 0 0

70 40 60 @& 100 70 40 60 80 100 70 40 60 &0 i

_images/twedit_steppable_wizard.png
6 6

2 3

—r

@ ““HAW

untitled.txt - Twedit++5

J PE 54 0% P

00

CC3D Project

CC3D Simulation

® 06 /. Generate CC3D C++ Module

Module Core Name |GrowthSteppable|

Browse...

Module Directory D/core/CompuCell3D/steppables \

Code Layout

(e) Main Code) Developer Zone

C++ Module Type

) Plugin (e) Steppable 4 Python Wrap [| Attach cell attribute

_static/ajax-loader.gif

_images/htbl_output.png
Calculating HTBL for all cell type combinations

HTBL between type 1 and 2 is
HTBL between type 2 and 1 is
HTBL between type 1 and 1 is
HTBL between type @ and 1 is

THIS ENTRY DOES NOT EXIST. HTBL between type 3 and 20 is

Metropolis Fast

total number of pixel copy attempt:
Number of Attempted Energy Calculations=:

3261.0
3261.0

1504.0

3210

0.0

5536

640

Step 2 Flips 367/65536 Energy 1368 Cells 484 Inventory=484
Calculating HTBL for all cell type combinations

HTBL between type 1 and 2 is
HTBL between type 2 and 1 is
HTBL between type 1 and 1 is
HTBL between type @ and 1 is

3265.0
3265.0
1514.0
326.0

THIS ENTRY DOES NOT EXIST. HTBL between type 3 and 20 is 0.0

_images/twedit_generated_steppable.png
/Users/m/CC3D_DEVELOP/CompuCell3D/core/CompuCell3D/steppables/CMakeLists.txt - Twedit++5

@ & Growt... | @ E GrowthSte...

1 Find_Package (OpenMP)
2
3 message (" OPEN MP FOUND " $OPENMP_FOUND)
4
5 INCLUDE_DIRECTORIES (
6 ${COMPUCELL3D_SOURCE